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non-phytoplankton suspended sediment. Applica-
tion of this approach to particulate nutrient data col-
lected in Missouri impoundments yields estimates of 
the mass ratio of N:P in phytoplankton ranging from 
8 to 10 across a variety of lakes and seasons. N:P in 
particulate matter ranged from 6 to 70, a variabil-
ity driven by differences in nutrients bound to non-
phytoplankton suspended sediment. We adapted the 
Bayesian models to estimate N:P using more com-
monly available measurements of total P and total N 
and applied this model to a continental-scale moni-
toring data set. We compared phytoplankton nutrient 
content estimated from the two analyses and found 
that when datasets lack direct measurements of par-
ticulate nutrient concentrations, the model estimate of 
phytoplankton nutrient content includes contributions 
from nutrients within phytoplankton and dissolved 
nutrients that are associated with changes in phyto-
plankton biomass.

Keywords  Lake · Nitrogen · Phosphorus · 
Phytoplankton · Redfield ratio · Stoichiometry

Introduction

Phytoplankton provide a critical link in global bio-
geochemistry cycles, taking up and converting ele-
mental nutrients to forms that are accessible to other 
trophic levels (Falkowski 1994). Elemental stoichi-
ometry within phytoplankton is a key parameter for 

Abstract  Accurately estimating the elemental 
stoichiometry of phytoplankton is critical for under-
standing biogeochemical cycles. In laboratory experi-
ments, stoichiometric ratios vary among species and 
with changes in environmental conditions. Field 
observations of total phosphorus (P) and total nitro-
gen (N) collected at regional and national scales can 
supplement and expand insights into factors influenc-
ing phytoplankton stoichiometry, but analyses applied 
to these data can introduce biases that affect inter-
pretations of the observed patterns. We introduce an 
analytical approach for estimating the ratio between 
phytoplankton N and P from the particulate fraction 
of nutrient pools in lake samples. We use Bayesian 
models to represent observations of particulate P and 
N as the sum of contributions from nutrients bound 
within phytoplankton and nutrients associated with 
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understanding this process, and stoichiometry has 
long been assumed to conform to a nearly constant 
ratio among carbon, nitrogen, and phosphorus (Red-
field 1958). However, departures from this ratio occur 
(Geider and Roche 2002) and improved understand-
ing of the reasons for variation in elemental stoichi-
ometry would inform both models of global nutrient 
cycles and predictions of the local effects of nutrient 
enrichment.

Wide variations in ratios among C, N, and P in 
phytoplankton have been observed when environ-
mental conditions are experimentally manipulated. 
Stoichiometry varied when single algal species were 
grown in chemostats and the ratio of supplied nutri-
ents (Rhee 1978) or growth rates (Goldman et  al. 
1979) were varied. Similar studies have examined the 
effects of environmental factors such as temperature 
and light availability on stoichiometry (Dickman et al. 
2008; Thrane et al. 2017). Analyses of data compiled 
from individual studies have provided insight into the 
broader mechanisms and factors influencing stoichi-
ometry (Hillebrand et al. 2013; Yvon‐Durocher et al. 
2015). These data have also guided the development 
of models that predict bulk, emergent assemblage 
characteristics based on phytoplankton traits (Bona-
chela et al. 2016). Changes in bulk assemblage char-
acteristics with different levels of nutrient supply 
have also been examined directly with experimental 
manipulations in microcosms and mesocosms (Hall 
et al. 2005; Schulhof et al. 2019).

Analyses of large, observational data sets can test 
stoichiometry theories derived from smaller scale 
experiments and potentially extend the range of con-
ditions to which these theories apply. Analyses of 
marine particulate matter showed broad regional dif-
ferences in stoichiometric ratios (Copin-Montegut 
and Copin-Montegut 1983), latitudinal gradients 
(Martiny et  al. 2013a; Yvon‐Durocher et  al. 2015), 
and temperature effects (Martiny et al. 2013b). Fewer 
examples of analyses of particulate matter in fresh-
water lakes are available, but these studies show par-
ticulate N:P to be systematically greater than that 
observed in oceans (Hecky et al. 1993; Sterner et al. 
2008). At least two issues inherent to stoichiometric 
analyses of particulate matter influence the broad 
applicability of these results. First, relatively few 
measurements of particulate matter in lakes are avail-
able, and therefore, broad-scale analyses require data 
assembled from distinct sources. However, the effects 

of various measurement protocols employed in differ-
ent surveys have not been considered (Lampman et al. 
2001; Gibson et al. 2015). Second, the stoichiometry 
of all particulate matter differs from that of just phy-
toplankton because of contributions from non-living 
suspended sediment with different concentrations of 
P and N. Hence, stoichiometric trends estimated from 
lake particulate matter may be biased (Hessen et  al. 
2003; Yuan and Jones 2019).

Here, we describe a statistical approach for esti-
mating separate contributions of distinct types of par-
ticulate matter to measurements of total P (TP) and 
total N (TN). When applied to particulate matter data, 
this approach separately accounts for contributions of 
P and N bound to inorganic and organic sediment and 
P and N bound in phytoplankton, facilitating a clearer 
interpretation of observed trends. We hypothesize 
that the approach can be adapted for use with meas-
urements of TP and TN, rather than just particulate 
matter measurements, and that estimates of P- and 
N-content of phytoplankton based on analysis of TP 
and TN will be similar to estimates based on analy-
sis of particulate matter. By expanding beyond infre-
quently collected particulate matter measurements to 
more commonly available lake monitoring measure-
ments of total nutrient pools, phytoplankton stoichi-
ometry can potentially be estimated in a broader array 
of settings, enhancing efforts to examine the effects of 
different environmental factors on stoichiometry. We 
demonstrate the analytical approach with particulate 
data collected from impoundments in Missouri (Mo) 
and then test whether similar concentrations of P- and 
N-content of phytoplankton are estimated when the 
adapted model is applied to continental spatial scale 
data collected by the National Lakes Assessment 
(NLA) (US EPA 2010).

Methods

Data

In 2004 weekly samples were collected from 15 Mo 
impoundments as integrated photic zone samples near 
the dam of each reservoir. Study reservoirs were con-
structed in the Central Irregular Plains region [Ecore-
gion 40, Omernik (1987)] of northern Mo between 
1950 and 1992. The range in size (10–408 ha), mean 
depth (1.6–5.7  m) and flushing rate (0.1–3.4 times 
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per year) represent regional reservoir conditions 
(Jones et  al. 2008). Total suspended solids (TSS) 
were determined by filtering a known volume of lake 
water through Whatman934-AH filters (nominal filter 
size: 1.5 µm) that were pre-rinsed, dried, ashed, and 
tared. Non-volatile suspended sediment (NVSS) was 
determined by weight after ashing TSS samples, and 
volatile suspended sediment (VSS) was determined 
by difference (TSS − NVSS). Samples were analyzed 
for Chl (uncorrected for degradation products), TP, 
dissolved P, TN, dissolved inorganic N (DIN), and 
dissolved organic N (DON). Chl was measured from 
material retained on a 1  µm Gelman AE filter. Dis-
solved nutrient concentrations were estimated in fil-
trate through the Whatman934-AH filters.

NLA data were collected in summers 2007 and 
2012 (May–September) from a random sample 
of lakes in the continental United States. In 2007, 
lakes with surface areas larger than 4 hectares and, 
in 2012, lakes larger than 1 hectare, were selected 
from the contiguous U.S. using a stratified random 
sampling design (US EPA 2012a). During each visit 
to a selected lake, an extensive suite of abiotic and 
biological variables was measured. Only brief details 
on sampling protocols are provided here regarding 
the parameters used; more extensive descriptions of 
sampling methodologies are available in the NLA 
documentation (US EPA 2007, 2011). A sampling 
location was established in open water at the deepest 
point of each lake (up to a maximum depth of 50 m 
[m]) or in the mid-point of reservoirs. A vertical, 
depth-integrated methodology was used to collect a 
water sample from the photic zone of the lake (to a 
maximum depth of 2 m). Multiple sample draws were 
combined in a rinsed, 4-L (L) cubitainer. When full, 
the cubitainer was gently inverted to mix the water, 
and an aliquot was taken as the water chemistry sam-
ple. That subsample was placed on ice and shipped 
overnight to the Willamette Research Station in Cor-
vallis, Oregon.

TN, TP, nitrate–nitrite (NOx), ammonia, and dis-
solved organic carbon (DOC) concentration were meas-
ured in the laboratory from the open water sample at 
prespecified levels of precision and accuracy (US EPA 
2012b). Typical laboratory methods included persulfate 
digestion with colorimetric analysis for TN and TP, and 
UV promoted persulfate oxidation to CO2 with infra-
red detection for DOC. To measure chlorophyll a (Chl 
a) concentration, 250  mL of lake water was pumped 

through a glass fiber filter in the field and quantified in 
the laboratory by fluorometry to prespecified levels of 
precision and accuracy. Examples of lower reporting 
limits include 4 µg/L for TP, 20 µg/L for TN, 0.2 mg/L 
for DOC, and 0.5 µg/L for Chl a.

Statistical analysis

We specified separate statistical models for phospho-
rus and nitrogen. For each of these nutrients, we first 
fit a model to describe particulate concentrations of the 
nutrient using measurements collected from Mo lakes. 
We then adapted the particulate nutrient model such 
that it could be applied to measurements of total nutri-
ents, and applied this adapted model to continental-
scale measurements of TP and TN.

Phosphorus

Measurements of particulate P are expressed as the sum 
of P bound within phytoplankton and P bound to other 
types of inorganic and organic suspended sediment (i.e., 
non-phytoplankton suspended sediment, SSnp) (Fig. 1):

(1)Ppart = TP − Pdiss = d1Chl
n + d2SS

m
np

Fig. 1   Schematic for total phosphorus (TP) model. TP in 
Missouri (Mo) dataset is modeled as being the sum of con-
tributions from P associated with phytoplankton biomass, 
quantified as chlorophyll concentration (Chl), P sorbed onto 
non-phytoplankton suspended sediment (SSnp), and dissolved 
P (Pdiss). The parameters d1 and n characterize the amount of 
P per unit of Chl, and the parameters d2 and m characterize 
the amount of P per unit of SSnp. The box for SSnp is shaded 
to indicate that it is estimated from observations of total sus-
pended sediment (TSS). A similar model for TP is specified for 
the National Lakes Assessment (NLA) dataset but the contri-
bution from the components enclosed by the dashed rectangle 
is represented by the parameter v 
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where particulate P (Ppart) is calculated as the dif-
ference between TP and dissolved P (Pdiss). P bound 
within phytoplankton is modeled as the proportion 
of Ppart that increases systematically with increases 
in phytoplankton biomass, as quantified by Chl. This 
systematic increase is modeled as a power function 
defined by a coefficient, d1, and an exponent, n. P 
bound to non-phytoplankton sediment is modeled as 
the proportion of Ppart that increases systematically 
with SSnp, and this relationship is also expressed as 
a power function with a coefficient, d2, and an expo-
nent, m.

SSnp is difficult to measure but a measurement of 
total suspended solids (TSS) includes contributions 
from both phytoplankton and non-phytoplankton 
components. We can therefore estimate SSnp by sub-
tracting the contribution of suspended sediment that 
is directly associated with phytoplankton from TSS. 
That is, we write the following expression:

where TSSmn is the mean value of observed TSS in 
a sample, and suspended sediment that is directly 
associated with phytoplankton is again modeled as 
a power function of Chl concentration, with a coef-
ficient, b, and an exponent, p. Measurements of TSS 
and Chl were highly skewed, and log transformations 
were required to effectively fit the relationship to 
observed data:

where the subscript, i, refers to measurements in dif-
ferent samples. The coefficient, b, is subscripted by 
j to indicate that different values are estimated for 
each month of the year. That is, different amounts of 
suspended sediment were attributed to phytoplank-
ton depending on when the sample was collected 
(see Appendix S1: Fig. S1). The term, eTSS,i, quanti-
fies measurement error for TSS and was modeled as 
a normally distributed random error with a mean of 
zero and a standard deviation of sTSS. The average 
magnitude of the measurement error for TSS was 
approximately 10% of the observed value (US EPA 
2012b), and because the measurements were log-
transformed, this error was expressed as a prior dis-
tribution for sTSS that was normal with a mean value 
of 0.1.

(2)TSSmn = bChlp + SSnp

(3)log
(

TSSi
)

= log
(

bj[i]Chl
p

i
+ SSnp,i

)

+ eTSS,i

SSnp is modeled as a log-normal random variable, 
and the value of SSnp estimated for each sample is used 
simultaneously in the model for TP during model fit-
ting. Log-transformations are also applied to the TP 
model equation, yielding the following expression:

where i indexes individual samples. The random error 
eTP,j is normally distributed with a mean of zero and a 
standard deviation of sTP. Measurement error for TP 
was also 10% of the measured value, and so, a normal 
prior distribution was specified for sTP with a mean 
value of 0.1.

We considered the possibility that the P-content in 
phytoplankton varied seasonally or spatially among 
lakes by fitting models in which we estimated different 
values of d1 for each month of the year or for each lake. 
We also fit models in which values of d2 (the phospho-
rus bound to SSnp) varied by month or by lake. The 
inclusion of indices j and k in the equation above indi-
cates that different values for these coefficients were 
considered. In all, we fit four versions of the model for 
TP in which either d1 or d2 varied by month or lake. 
Model performance for each of the four versions of 
the model was quantified by computing the root mean 
square prediction (RMS) error for log(TP). Modeled 
relationships for TSS and TP were fit simultaneously 
in a hierarchical Bayesian network (Stan Development 
Team 2016). Weakly informative priors were speci-
fied for all parameters except for the parameters quan-
tifying the magnitude of measurement error, which are 
described above.

The structure of the model described in Eq. 1 pro-
vides the basis for estimating a relationship between 
Chl and P in data sets without direct measurements of 
particulate P. More specifically, we estimated the rela-
tionship between Chl and P by fitting the following 
relationship to the NLA data:

where the contributions of Pdiss and SSnp to TP are 
combined in the variable, v. Again, when fitting to the 
observed NLA data, log transformations are needed:

(4)
log

(

TPi

)

= log
(

Pdiss,i + d1,j[i]Chl
n
i
+ d2,k[i]SS

m
np,i

+
)

+ eTP,i

(5)TP = d1Chl
n + v

(6)log
(

TPi

)

= log(d1Chl
n
i
+ vi) + eTP,i
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where vi is a random, log-normally distributed vari-
able, and eTP,i is a normally distributed measurement 
error with a mean value of zero and a standard devia-
tion of sTP. Different mean values for vi were calcu-
lated for each Level III ecoregion (Omernik 1987) to 
account for the effects of geographic location on the 
magnitude of other contributors to TP:

where μj is the mean value for vi in ecoregion j, and 
σ is the standard deviation about the ecoregion mean. 
The individual values of μj are themselves drawn 
from a common normal distribution with a single 
overall mean and standard deviation.

Intuitively, estimating the values of two random 
variables in the model (vi and eTP,i) for every sam-
ple would overfit the available data. However, two 
characteristics of the model yield a tractable solu-
tion. First, when fitting the model, the value of 
the standard deviation of eTP,i (sTP) quantifies the 
location of the limiting Chl-P relationship rela-
tive to the edge of the distribution of samples. This 
parameter is a direct estimate of the average mag-
nitude of measurement error in TP, which is known 
to be approximately 10% of the measured value 
(US EPA 2012b). We therefore specified a prior 
distribution for sTP that was a normal distribution 
with a mean value of 0.1 (as is specified in the 
Mo model). Second, because the random variable 
vi is log-normally distributed, its value is strictly 
positive. Therefore, the random values of vi only 
account for deviations in the values of TP above 
the lower bound defined by Chl-P relationship. 
Taken together, this modeling approach provides 
a means of estimating the Chl-P relationship that 
incorporates knowledge regarding both the meas-
urement error in TP and the functional form of the 
governing relationship.

We restricted NLA data to Chl concentrations 
corresponding to the 1st and 99th percentiles of 
the distribution of Chl concentrations observed in 
Mo, to help ensure that Chl-P relationships were 
estimated for the same range of eutrophication 
status in the two data sets. We then fit the model 
described in Eq. 6 to NLA data and compared the 
Chl-P relationship estimated from the NLA data to 
that estimated from the Mo particulate data.

(7)vi = logNormal(�j[i], �)

Nitrogen

The format of the model for N in particulate matter 
in Mo mirrors the model for P in that TN is modeled 
as the sum of contributions from dissolved N (DIN 
and DON), N bound in phytoplankton, and N bound 
to non-phytoplankton sediment (Fig. 2):

N bound in phytoplankton is again modeled as a 
power function of Chl, with a coefficient, f1, and an 
exponent, a; and N bound in sediment is modeled as 
a power function of VSSnp with a coefficient, f2, and 
an exponent b. The subscript, i, refers to different 
samples, and coefficients f1 and f2 are indexed with 
j and k again, to indicate that four variations of the 
TN model were examined in which different values of 
these coefficients were estimated for each lake or each 
sampling month. The random error eTN,i is modeled 
as a normal distribution with a mean of zero and a 
standard deviation of sTN. Here again, a 10% measure-
ment is expected, and so we specified a normal prior 
distribution for sTN with a mean value of 0.1 Prior dis-
tributions for f1, f2, a, and b were weakly informative.

In the model for N, the contribution of suspended 
sediment to TN is restricted to N bound in VSS, 
rather than all suspended sediment, because previ-
ous analysis and observations have shown that negli-
gible amounts of N are sorbed to inorganic sediment 

(8)
log(TNi) = log(DINi + DONi + f

1,jChl
a
i
+ f2,kVSS

b
np,i

) + eTN,i

Fig. 2   Schematic for total nitrogen (TN) model. TN in the Mo 
dataset is modeled as the sum of contributions from dissolved 
inorganic nitrogen (DIN), dissolved organic nitrogen (DON), N 
associated with phytoplankton biomass (Chl), and N associated 
with non-phytoplankton volatile suspended sediment (VSSnp). 
The parameters f1 and a characterize the amount of N per unit 
of Chl. A similar model for TN is specified for the NLA data-
set but the contribution from the component enclosed by the 
dashed rectangle is represented by the parameter u. Also, con-
centrations of NOx in the NLA data are used to approximate 
DIN, and DON is modeled as being directly proportional to 
dissolved organic carbon
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(Vitousek and Howarth 1991). Focusing on VSS 
eliminates the uncertainty introduced by large vari-
ations in inorganic suspended sediment that do not 
affect TN concentrations. A model identical to that 
used to estimate SSnp in the P model was specified to 
estimate VSSnp for the N model.

The contribution of Chl is modeled as a power 
function with a coefficient, c, and an exponent, q. 
The model calculates VSSnp as the difference between 
observed VSS and the component of VSS that is 
directly associated with changes in Chl. The prior 
distribution of the standard deviation of eVSS,i was 
specified as normal with a mean of 0.1. Prior distribu-
tions for all other parameters were non-informative. 
Modeled relationships for VSS and TN were again fit 
simultaneously as a hierarchical Bayesian network for 
Mo observations, and the RMS prediction error for 
each of the variations of the model was computed.

Adapting the particulate N model to measure-
ments available in the NLA was more complex than 
the model for TP because of the large and consistent 
contributions of dissolved organic nitrogen (DON) 
to measurements of TN (Yuan and Jones 2019). 
Therefore, even in a large dataset such as the NLA, 
we expected few samples in which the contribu-
tion of DON was small relative to N bound to phy-
toplankton. Direct measurements of DON are rarely 
collected in routine monitoring; the NLA data set is 
a typical example of a case in which only TN and 
NOx are available. Measurements of DOC, however, 
are more commonly available, and because DOC and 
DON often originate from the same allochthonous or 
autochthonous sources (Berman and Bronk 2003), we 
hypothesized that DON concentration could be mod-
eled as being proportional to the DOC concentration 
in a sample. We therefore specified the following 
model for TN for the NLA data:

where the contribution of DIN is represented by 
a direct measurement of NOx and a second term, 
gDOC, reflects the hypothesis that DON is directly 
proportional to DOC. The contribution of N bound 
in phytoplankton is again represented by a power 
law relationship with Chl with a coefficient, f1, and 
an exponent, a. The final term, u, quantifies the 

(9)log
(

VSSi
)

= log
(

cChl
q

i
+ VSSnp,i

)

+ eVSS,i

(10)TN = NOx + gDOC + f1Chl
a + u

contribution from N associated with non-phytoplank-
ton VSS. Log-transformation yields the following 
relationship:

where the subscript, i, refers to different samples. The 
subscript j is included for the coefficient g to indicate 
that different values for this coefficient were esti-
mated for different Level III ecoregions in the U.S. to 
account for potential spatial differences in how DOC 
and DON are related. The random variable ui is log-
normally distributed, and the random error eTN,i is 
normally distributed with a mean of zero and a stand-
ard deviation of sTN. As with the NLA TP model, 
a prior distribution for sTN is specified with a mean 
value of 0.1 to represent a 10% average magnitude of 
measurement error for TN.

We fit the adapted model for TN using the NLA 
data. Then, to partially validate the hypothesis that 
DOC and DON were proportional to one another, we 
tested whether the DOC-DON relationship estimated 
from the NLA data for the Irregular Plains ecoregion 
matched the distribution of direct measurements of 
DOC and DON in the Mo dataset. We then compared 
the Chl-N relationship estimated using the NLA data 
to the same relationship estimated using Mo particu-
late data.

Results

A total of 720 samples collected from 15 impound-
ments were available for fitting models for P and N 
in Mo with Chl concentrations ranging from 1 to 
195  µg/L (Table  1). NLA data were constrained to 
samples with Chl concentrations ranging from 1 to 
108 µg/L, corresponding to the 1st and 99th percen-
tiles of the distribution of Mo Chl measurements. 
This constraint yielded a total of 2112 samples col-
lected from 1632 different lakes.

In the Mo data set, the tested models differed in 
their predictive power (Table 2). Lake-specific coef-
ficients for the P-content of SSnp yielded the best 
predictive performance for the P model, whereas 
month-specific coefficients for the N-content of VSSnp 
yielded the best predictive performance for the N 
model. Differences in predictive performance among 

(11)
log

(

TNi

)

= log
(

NOx,i + gjDOCi + f1Chl
a
i
+ ui

)

+ eTN,i
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the model variations were smaller for the N model 
compared to the P model.

For the Chl-P relationship, the mean value of the 
coefficient, d1, was estimated as 0.84 (0.61, 1.15) 
(95% credible interval shown in parentheses), and the 
exponent, n, was estimated as 0.92 (0.85, 1.01). For 
the Chl-N relationship, the mean value of the coef-
ficient, f1, was estimated as 6.39 (3.81, 10.6), and 
the exponent, a, was estimated as 0.96 (0.84, 1.09). 
The mass ratio between N and P within phytoplank-
ton (N:Pphyt) can be calculated from the two models 
as the ratio of N-content per unit of Chl to P-content 
per unit of Chl (i.e., N ∶ Pphyt = f

1
Chla∕d1Chl

n) . 
Posterior sampled distributions of f1, a, d1, and n can 
then be combined to calculate a posterior distribution 
of N:Pphyt. The mean value of N:Pphyt varied slightly 
with Chl concentration, but this relationship was not 
statistically different from a constant with a value 
between 8.2 and 9.8 (Fig.  3). For comparison, the 
median value of TN:TP in the Mo dataset was 23 and 
ranged from 6 to 70.

The amount of P associated with SSnp varied con-
siderably among lakes in the Mo data. The overall 
mean value of the coefficient, d2, was 6.84 (5.11, 
9.19), but among lakes the value of the coefficient 
ranged from 2.95 to 17.4. The value of the exponent, 
m, for this term was 0.50 (0.45, 0.55). We explored 
the associations between different lake physical char-
acteristics and the P-content of non-phytoplankton 
sediment and found P-content increased with flush-
ing rate (Fig. 4, left panel). Among Mo samples, the 

mean contribution of P bound to non-phytoplankton 
sediment to TP was 37% and ranged from 5 to 81%.

The best model for N included month-specific val-
ues for the amount of N associated with VSSnp. The 
overall mean value of the coefficient, f2, was 93.6 
(75.0, 112), and among different months, the mean 
value ranged from 52.1 to 152. The value of the 
exponent, b, was estimated as 0.28 (0.20, 0.38). The 
N-content of VSSnp exhibited a weak relationship with 
time, increasing in the summer (Fig. 4, right panel).

The estimated mean relationship between Chl 
and P for the full Mo data set corresponded closely 
to the lower bound of the observed distribution of 
samples in the plot of Chl versus Ppart (Fig. 5, left 
panel). Contributions to Ppart from P sorbed to SSnp 
account for the fact that observed values of Ppart 
are located above this lower bound. Similarly, the 
estimated mean relationship between Chl and N for 
the full Mo data set corresponded with the lower 
bound of majority of the data (Fig. 5, right panel). 
Variability in observed values of Npart increased 
as Chl concentration decreased, a trend attribut-
able to the proportional increase in the influence 
of measurement error when concentrations of Npart 
were less than 100 µg/L. That is, as Npart decreases 

Table 1   Summary statistics 
for Mo and NLA data

Mo NLA

Minimum Median Maximum Minimum Median Maximum

Chl (µg/L) 0.6 12.1 195.2 1.0 8.0 107.2
TP (µg/L) 6.3 33.0 251.8 3.0 35.0 3346.0
TN (µg/L) 210 840 2210 14 610 54,000

Table 2   RMS error for different model variations

Coefficients for 
Chl

Coefficients for sus-
pended sediment

TP TN

– Lake 0.128 0.556
– Month 0.166 0.538
Lake – 0.133 0.553
Month – 0.162 0.546

Fig. 3   N:Pphyt estimated as a function of Chl. Solid line: mean 
relationship, gray shading: 90% credible interval
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below 100  µg/L, measurement error is estimated 
as ± 10 µg/L, which is an increasingly large propor-
tion of the observed value. Above 100 µg/L, meas-
urement error is estimated as 10% of the measured 
value, which appears as a constant level of variabil-
ity in a log-transformed plot.

The adapted model for TP accurately predicted 
TP concentrations in the NLA with an RMS predic-
tion error of 0.16. The mean value of the exponent, 
n, in the Chl-P relationship was estimated as 0.96 
(0.92, 1.01), and the mean values of the coefficient, 
d1, was 1.16 (0.99, 1.33). Mean ecoregion-specific 
values for non-phytoplankton contributions to TP 
ranged widely, from 6 µg/L (in the Appalachians) to 
140 µg/L (in upper Midwest ecoregions) (see Appen-
dix S1: Fig. S2). The relationship between Chl and 
P estimated from NLA closely followed the lower 
bound of the observed distribution of Chl and TP 
measurements (Fig. 6, left panel).

The adapted model for TN predicted observed TN 
concentrations accurately in the NLA, with an RMS 
prediction error of 0.20. The mean value of the expo-
nent, a, was 1.06 (1.00, 1.12). The mean value of 
the coefficient, f1, was 9.22 (6.73, 12.43). The ratio 
between DOC and DON ranged from low values of 
approximately 9 in upper Midwest ecoregions, to high 
values of approximately 23 in forested ecoregions in 
the northwest U.S. and in the Appalachian Mountains 
(Appendix S1: Fig. S3). The relationship between Chl 
and N estimated from the NLA data was markedly 
steeper than the lower bound of the observed data and 
diverged from the observed lower bound at low Chl 
concentrations (Fig. 6, right panel). This gap between 
the estimated Chl-N relationship and the lower bound 
of the data can be attributed to DON, as estimated by 
DOC. The accuracy of estimated DON in the NLA 
model was supported by the comparison of direct 
measurements of DOC and DON in Mo dataset 

Fig. 4   P-content and N-content of non-phytoplankton sedi-
ment and non-phytoplankton volatile suspended sediment, 
respectively. P-content is plotted versus lake flushing rate, and 
N-content is plotted versus sampling month. P-content cal-

culated at the overall mean SSnp concentration of 3.9  mg/L. 
N-content calculated at the overall mean VSSnp concentration 
of 0.9  mg/L. Open circles: median value; vertical line seg-
ments: 95% credible intervals

Fig. 5   Limiting relation-
ships between Chl and Ppart 
(left) and Chl and Npart 
estimated in the Mo data 
set. Open circles: observed 
values in Mo data set; 
solid line: estimated mean 
relationship for all data; 
gray shading: 95% credible 
intervals on overall mean 
relationship
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with parameters estimated from the NLA model for 
the Central Irregular Plains (where the Mo lakes are 
located) (Fig.  7). The relationship estimated using 
NLA data was similar to the mean trends observed 
in measured DOC and DON in the Mo dataset for 
DOC concentrations greater than 6  mg/L. However, 
at lower DOC concentrations, the estimated rela-
tionship overpredicted DON, an error that may have 
introduced a small amount of bias in the estimated 
relationship between Chl and N in the NLA data.

Estimates of both the Chl-P and Chl-N derived 
from NLA data were greater than the same relation-
ships estimated from Mo particulate data (Fig.  6). 
For both nutrients, the values of the exponents on Chl 
(and the slope of the relationship in the log–log plots) 
estimated using NLA data were statistically indis-
tinguishable from those estimated using Mo data. 

However, the estimated coefficients for both the Chl-P 
and Chl-N relationships were significantly greater 
than those estimated with Mo data. N:Pphyt calculated 
using the results from the NLA model range from 8.4 
to 12.1 over the same range of Chl concentrations as 
shown in Fig. 3.

Discussion

The TP and TN models described here represent total 
concentrations of each nutrient as the sum of differ-
ent fractions in the water sample. This approach to 
modeling TP and TN advances understanding of fac-
tors influencing variation in nutrient concentrations in 
lakes. It also identifies issues inherent to estimating 
phytoplankton stoichiometry using widely available 
monitoring data in which particulate P and N are not 
measured.

Representing measurements of particulate P and N 
as the sum of phytoplankton and non-phytoplankton 
components controls for the effects of non-phyto-
plankton seston when estimating phytoplankton N:P. 
Field estimates of phytoplankton stoichiometry have 
traditionally been based on nutrient concentrations in 
suspended particulate matter, a practice that assumes 
phytoplankton account for most suspended particles 
(Hecky et  al. 1993). This assumption is more likely 
true when applied to suspended particles collected 
in ocean surveys, and analyses of ocean data have 
yielded insights into factors that affect phytoplankton 
stoichiometry across broad spatial scales (Martiny 
et  al. 2013b). In lakes, particularly impoundments, 
the potential for high concentrations of allochthonous 
suspended sediment weakens the link between par-
ticulate and phytoplankton stoichiometry (Yuan and 

Fig. 6   NLA data with 
estimated Chl-P and Chl-N 
relationships. Open circles: 
NLA data, solid lines: 95% 
credible intervals about lim-
iting relationship in NLA, 
gray shading: 95% credible 
intervals for relationship 
estimated in MO

Fig. 7   Measured DOC and DON in Mo dataset. Solid line: 
estimated relationship between DOC and DON from NLA 
analysis for Ecoregion 40, the Central Irregular Plains
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Jones 2020). Specifically, P adsorbed onto inorganic 
sediment biases estimates of particulate N:P toward 
lower values than occur in phytoplankton, while N 
associated with non-phytoplankton organic sedi-
ment can bias particulate N:P to higher values (Hes-
sen et  al. 2003). Variations in inorganic and organic 
sediment concentrations likely account for particu-
late N:P in lakes being more variable than in oceans 
(Hecky et al. 1993). In contrast, after controlling for 
the effects of non-phytoplankton suspended sedi-
ment in our analysis, estimates of phytoplankton N:P 
exhibited relatively little variability, ranging in value 
from 8 to 10. When N:P is estimated in particulate 
measurements from lakes with low levels of alloch-
thonous particles, the bias associated with non-phy-
toplankton sediment may also be small. For example, 
in 130 particulate samples collected from lakes in the 
upper Midwest region of North America, mean mass 
N:P was 9.9, while median N:P was 8.6 (Sterner et al. 
2008), values that were very similar to those esti-
mated in the present study.

Analysis of particulate data from the Mo data-
set identified factors strongly influencing variation 
in total concentrations of Ppart and Npart. Differences 
among lakes in the P-content of SSnp accounted for 
most variability in Ppart, whereas temporal variability 
in the N-content of VSSnp accounted for most vari-
ability in TN models. Substantial amounts of reactive 
P are adsorbed onto sediment prior to loading into 
downstream lakes (Zhou et al. 2005), and in the sam-
pled Mo impoundments, our analysis found that P on 
non-phytoplankton suspended sediment accounted for 
up to 81% of TP in a single sample. We also found 
a strong relationship between sediment P-content 
and flushing rate, a pattern that may have arisen from 
removal processes that gradually reduce the concen-
trations of P sorbed to suspended sediment. That is, in 
rapidly flushed lakes, sediment P-content may reflect 
concentrations in loaded sediment, whereas in lakes 
with longer retention times, the observed P-content 
of SSnp may reflect the effects of removal processes 
(e.g., phytoplankton or bacterial uptake) that occur 
over longer time scales (DePinto et al. 1981).

Seasonal trends in the N-content of VSSnp likely 
reflect differences in the amount of N in allochtho-
nous organic sediment. During summer, alloch-
thonous sediment likely includes greater amounts 
of senesced benthic algae (Larsen et  al. 2015) and 
upland sediments during storm events (Fox et  al. 

2010), both of which would include high N concen-
trations. In contrast to P, flushing rate was not associ-
ated with N-content of VSSnp (plot not shown). The 
lack of an effect of flushing rate on VSSnp N-content 
may reflect the high concentrations of biologically 
available, inorganic N in the water, which would 
reduce the need for phytoplankton to use N within 
VSSnp.

These results indicate that temporal and spatial 
variations in Chl-P and Chl-N relationships (i.e., 
phytoplankton stoichiometry) accounted for less vari-
ability in Ppart and Npart than other sources, but some 
variations in these relationships are still likely given 
the extensive evidence from laboratory studies dem-
onstrating the sensitivity of N:Pphyt to nutrient availa-
bility, light availability, and changes in other environ-
mental conditions (Rhee 1978; Goldman et al. 1979; 
Dickman et  al. 2008; Thrane et  al. 2017). Luxury 
uptake of P may also temporarily alter observed ratios 
of N:P (Lin et al. 2016). Our estimates of N:Chl and 
P:Chl may also be influenced by environmental fac-
tors that alter Chl:C ratios (Cloern et al. 1995). Tem-
poral trends in Chl-P and Chl-N relationships may be 
discernible in larger datasets, but the amount of data 
available in the Mo data limited the degree that tem-
poral and spatial effects could be included in the same 
model without overfitting.

Alternatively, though, the relative stability of 
N:Pphyt in the present analysis may occur because 
it represents a bulk, emergent property of the entire 
phytoplankton assemblage, and less variation in bulk 
values would be expected relative to N:P estimated 
for individual species. That is, we may expect that 
compensatory shifts in phytoplankton assemblage 
composition occur with changes in environmental 
conditions that reduce the variability of N:Pphyt. The 
stability of N:Pphyt may even suggest that some degree 
of homeostasis exists at the bulk level even though 
individual phytoplankton species exhibit more vari-
ability in their stoichiometry (Elser and Sterner 2002; 
Hall et  al. 2005; Hessen et  al. 2013). Applying this 
same analysis to new datasets of particulate N and P 
may help broaden our understanding of the conditions 
under which homeostasis occurs versus conditions in 
which variations in phytoplankton stoichiometry are 
important to consider.

TN and TP concentrations are routinely measured 
in water quality sampling (Soranno et  al. 2014), but 
the lack of concurrent measurements of dissolved N 
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and P hinders efforts to use these data to understand 
phytoplankton stoichiometry. Nonetheless, some 
researchers have investigated trends in these param-
eters, and conclusions have varied depending on the 
study scale and location. For example, across three 
lakes with contrasting catchment land use, patterns 
in lake TN:TP matched patterns in TN:TP in stream 
exports to those lakes (Vanni et al. 2011). Similarly, 
in analyses of nutrient measurements from lakes in 
Iowa, distinct relationships between row-crop and 
pasture land use and lake TN:TP were observed 
(Arbuckle and Downing 2001). In contrast, when 
patterns were examined in a much larger study area, 
researchers concluded that the different catchment-
scale drivers of TN and TP existed, and therefore, 
predicting TN:TP stoichiometry from catchment 
characteristics was not feasible (Collins et al. 2017).

The lack of coherence in the different studies of 
whole water TN:TP values is not surprising, given 
that multiple factors influence concentrations in lake 
water. Considerable variability in the P-content of 
non-phytoplankton suspended sediment among lakes 
were observed in our analysis of Mo data, and this 
variability is compounded by variations in the amount 
of suspended sediment in a particular lake or region 
(Jones et  al. 2008). At the continental scale, the 
large range in concentrations of non-phytoplankton 
P among ecoregions illustrates the magnitude of the 
effect of sediment bound P on observed TP concen-
trations. Similarly, whole water TN measurements 
frequently consist primarily of DON (Yuan and Jones 
2019), which also varies substantially among lakes. 
In certain locations, reactive P and DIN can also con-
tribute substantially to observations of TP and TN 
(Filstrup and Downing 2017).

Our adaptation of particulate P and N models to 
more routinely available TP and TN was based on the 
assumption that in a large enough data set, concen-
trations of dissolved nutrients and nutrients bound to 
other suspended sediments would be small enough 
in some samples to allow an estimate of Chl-P and 
Chl-N relationships. These attempts were only par-
tially successful. Chl-P and Chl-N relationships 
estimated from the NLA data had the same slope as 
estimates based on Mo particulate data, but the coef-
ficients for these relationships were biased toward 
higher values of P and N per unit of Chl. The simi-
larity of the exponents on these relationships sug-
gests that components of TP and TN are present that 

increase with the standing stock of phytoplankton but 
are in excess of what is bound within phytoplankton. 
A likely source of these additional nutrients are dis-
solved concentrations of P and N that are generated 
by phytoplankton through exudation and lysis (Søn-
dergaard et  al. 2000; Prentice et  al. 2019). Direct 
measurements of dissolved P and N in the Mo data 
supported this interpretation of the model results (see 
Appendix S1: Fig. S4). Because the adapted model 
estimates the sum of both dissolved and particulate 
concentrations of P and N associated with phyto-
plankton biomass, estimating N:P within only phyto-
plankton with the current approach is difficult without 
additional data.

Although the adapted modeling approach does 
not provide accurate estimates of P and N within 
phytoplankton, the approach partitions total nutrient 
concentrations into components that are and are not 
associated with changes in phytoplankton biomass. In 
doing so, this approach provides insight into factors 
influencing observed variation in TP and TN. Similar 
to the Mo particulate model, much of the variability 
in TP and TN could be attributed to components other 
than P and N bound within phytoplankton. For exam-
ple, in the NLA model for TN, we observed that the 
amount of DOC associated with a unit of DON varied 
among ecoregions, a finding that is consistent with 
observations that the ratio between DOC and DON 
export is a function of watershed soil characteristics 
(Aitkenhead-Peterson et  al. 2009), watershed runoff 
(Lewis 2002), vegetation cover, and land use (Willett 
et al. 2004). The spatial distribution of average DON 
concentrations also indicated that higher concentra-
tions of DON were observed in lowland lakes than in 
mountainous lakes, a finding that is consistent with 
the idea that the rate at which runoff moves through 
a catchment controls the concentrations of dissolved 
allochthonous materials (Berman and Bronk 2003; 
Dillon and Molot 2005). Continental-scale estimates 
of DON derived from our analysis may also provide 
initial hypotheses regarding the effects of different 
catchment factors on the stoichiometry of dissolved 
organic matter.

In the NLA TP model, we did not attempt to estimate 
separate contributions from dissolved P and P bound to 
non-phytoplankton suspended sediment, but previous 
work has indicated that P bound to SSnp accounts for the 
majority of these contributions (Yuan and Jones 2019, 
2020). Hence, regional patterns in the concentrations of 
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non-phytoplankton P are mainly indicative of variation 
in both the average amount of inorganic sediment that 
is delivered to lakes and the amount of P that is bound 
to this sediment. These regional patterns are similar to 
those observed in analyses of suspended sediments in 
streams (Dodds and Whiles 2004), with high contribu-
tions of P-bound to suspended sediment in the upper 
Midwest regions and low contributions in mountain-
ous regions of the eastern and western U.S. The current 
analytical approach offers a robust means of estimat-
ing the impact of suspended sediments to the overall P 
budgets within lakes over large spatial scales.

The overall analysis described here informs the 
examination of both particulate and total nutri-
ent measurements. We suggest that this analytical 
approach provides a means of using field data to 
investigate trends in stoichiometry at larger spatial 
scales that would be difficult to address with labo-
ratory studies, helping to broaden and validate the 
applicability of these studies.
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