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ABSTRACT
The elemental composition of seston provides insights into how lake food webs function and how
nutrients cycle through the environment. Here, we describe a Bayesian network model that
simultaneously estimates relationships between dissolved and particulate nutrients, suspended
volatile and nonvolatile sediments, and algal chlorophyll. The model provides direct estimates of
the phosphorus (P) and nitrogen (N) content of phytoplankton, suspended non-living organic
matter, and suspended inorganic sediment. We applied this model to data collected from
reservoirs in Missouri, USA, to test the validity of our assumed relationships. The results indicate
that, on average among all samples, the ratio of N and P (N:P) in phytoplankton and non-living
organic matter in these reservoirs were similar, although under nutrient replete conditions, N:P
in phytoplankton decreased. P content of inorganic sediment was lower than in phytoplankton
and non-living organic matter. The analysis also provided a means of tracking changes in the
composition of whole seston over time. In addition to informing questions regarding seston
stoichiometry, this modeling approach may inform efforts to manage lake eutrophication
because it can improve traditional models of relationships between nutrients and chlorophyll in
lakes.
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Introduction

Since Redfield’s seminal work (Redfield 1958), aquatic
ecologists have measured the elemental composition of
seston and sought to explain its relationship to processes
such as nutrient cycling (Elser and Urabe 1999), nutrient
limitation for both phytoplankton (Klausmeier et al.
2004b, Ptacnik et al. 2010, Hillebrand et al. 2013) and
herbivores (Sterner and Hessen 1994), and food web
stability (Perhar and Arhonditsis 2009). In general, ele-
mental composition of seston is thought to reflect the
basic processes that cycle carbon (C), phosphorus (P),
and nitrogen (N) in the environment (Sterner et al.
2008). Because human activities have significantly
altered nutrient concentrations in aquatic ecosystems, a
better understanding of the causes of changes to the ele-
mental composition of seston is critical for managing
and mitigating the effects of excess nutrients in the envi-
ronment (Dodds 2006, Glibert et al. 2011).

Partitioning seston into its components, which
include living phytoplankton, non-living organic matter,
and inorganic matter, is difficult using data routinely col-
lected from field studies. Many studies rely on a series of
filters to separate particles of different size ranges and
then assume each size range is composed primarily of

unique aspects of seston, such as phytoplankton (Elser
and Hassett 1994) or bacteria (Cotner et al. 2010). In
some studies, post hoc tests are used to assess accuracy
of these initial assumptions (Hassett et al. 1997). Particle
size is, however, imperfectly associated with seston type.
Consequently, analyses of elemental composition of bulk
seston, even in restricted size ranges, provide an incom-
plete picture of nutrient allocation among various com-
ponents of the seston. For example, the range of
particle sizes associated with inorganic matter overlaps
with particle sizes associated with organic matter (Wall-
ing and Moorehead 1989).

Various laboratory methods for separating different
components of seston are currently used. For example,
centrifuging samples combined with colloidal silica sep-
arates living from non-living organic matter (Hamilton
et al. 2005). Alternatively, measurements of inorganic
particle density via electron microscopy and x-ray anal-
yses can partition total P measurements into organic and
inorganic components (Effler et al. 2014). These methods
are promising but not routinely applied.

Other workers have proposed statistical approaches
for separating the components of seston (Hessen et al.
2003), and we expand on this approach. More specifi-
cally, we asked whether the elemental composition of
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living phytoplankton, non-living organic matter, and
inorganic matter can be inferred by invoking basic
assumptions and analyzing measurements of total phos-
phorus (TP), total nitrogen (TN), suspended sediment,
and chlorophyll (Chl). We used a Bayesian network
model for this analysis that provides specific advantages
(described later) over more commonly applied frequent-
ist statistical methods. We then demonstrated that parti-
tioning seston components in this way yields new
insights into mechanisms driving changes in seston stoi-
chiometry and potentially improve our ability to predict
Chl from nutrient concentrations.

Methods

Data

We illustrated the models with data collected in 15 reser-
voirs constructed in the Glacial Till Plains region of
northern Missouri, USA, between 1950 and 1992. The
range in size (10–408 ha), mean depth (1.6–5.7 m),
and flushing rate (0.1–3.4 times per year) represents
regional reservoir conditions (Jones et al. 2008). Inte-
grated photic zone samples were collected weekly near
the dam of each reservoir between May and August
2004. Total suspended solids (TSS) were determined by
filtering a known volume of lake water through What-
man934-AH filters (nominal filter size: 1.5 µm; What-
man, Maidstone, UK) that were pre-rinsed, dried,
ashed, and tared. Nonvolatile suspended sediment
(NVSS) was determined by weight after ashing TSS sam-
ples, and volatile suspended sediment (VSS) was deter-
mined by difference (TSS − NVSS). Samples were
analyzed for Chl (uncorrected for degradation products),
TP, dissolved P, TN, dissolved inorganic N (DIN), and
dissolved N. Chl was measured from material retained
on a 1 µm Gelman AE filter (Pall Corporation, NY,
USA). Dissolved nutrient concentrations were estimated
in filtrate through theWhatman934-AH filters. A total of
241 samples were available for analysis.

Data collected by the US Environmental Protection
Agency (EPA) National Lakes Assessment (NLA) in
summers (May–Sep) 2007 and 2012 were used to quali-
tatively compare with trends estimated from Missouri
reservoirs. The NLA consisted of a random sample of
∼1800 lakes from the continental United States. During
each visit to a selected lake, a sampling location was
established in open water at the deepest point of each
lake (up to a maximum depth of 50 m) or in the mid-
point of reservoirs. A water sample was collected using
a vertical, depth-integrated methodology that collected
water from the photic zone of the lake (to a maximum
depth of 2 m). Multiple sample draws were combined

in a rinsed, 4 L cubitainer. When full, the cubitainer
was gently inverted to mix the water, and an aliquot
was taken as the water chemistry sample. This subsample
was placed on ice and shipped overnight to the Willam-
ette Research Station (Corvallis, OR, USA). TN and TP
were measured in the laboratory from the open-water
sample at pre-specified levels of precision and accuracy
(US EPA 2012). Typical laboratory methods included
persulfate digestion with colorimetric analysis for TN
and TP. To measure Chl concentration, 250 mL of lake
water was pumped through a glass fiber filter in the
field and quantified in the lab to pre-specified levels of
precision and accuracy.

Mathematical model

For TP, we assumed that 3 seston components in addi-
tion to dissolved P contribute to TP: P sorbed onto inor-
ganic (or NVSS), P associated with living phytoplankton,
and P associated with non-living organic suspended
sediment (VSSnp; Fig. 1).

Direct measurements of VSSnp were not available, but
we estimated its concentration by assuming that the con-
centration of all volatile suspended sediments is com-
posed of 2 main contributors: phytoplankton biomass
and non-living organic matter not associated with living
phytoplankton (i.e., VSSnp). Hence, we modeled
observed concentrations of VSS as follows:

VSS = kChl+ VSSnp, (1)

where VSS concentration is expressed as the sum of a
phytoplankton component, modeled as the product of
a coefficient (k) multiplied by Chl concentration, and a
non-phytoplankton component, VSSnp. The distribution

Figure 1. Schematic representation of the model for the Chl–TP
relationship. Observed TP originates from phytoplankton, which
is associated with chlorophyll (Chl), dissolved P (Pdiss), sediment-
bound P (NVSS), and P associated with non-living organic matter
(VSSnp). The shaded box for VSSnp indicates that direct measure-
ments of this parameter were not available, and its value is
inferred statistically.
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of k is assumed to be log-normal to constrain it to posi-
tive values. To fit this relationship to available data, we
log-transformed both sides of the equation to address
skewness in the observed distributions of the different
variables, and we introduced ε1, a term that allows resid-
ual variability in observed log(VSS):

log (VSSi) = log (kChli + VSSnp,i)+ 11,i , (2)

where the subscript i refers to individual samples in the
dataset, and the error term ε1,i is a random variable
drawn from a normal distribution with a mean value
of zero and a standard deviation of σ1. Exploratory anal-
ysis suggested that mean values for VSSnp varied among
lakes, so values of VSSnp,i were assumed to be drawn
from a log-normal distributions characterized by a
mean, μVSS-np, unique to each lake and a standard devia-
tion, σVSS-np:

log (VSSnp,i) = N(mVSS−np,j[i], sVSS−np), (3)

where the subscript j[i] refers to different lakes that cor-
respond with each sample, i. Mean values for each lake
(μVSS-np,j) were assumed to be drawn from a single com-
mon normal distribution, characterized by an overall
mean value and standard deviation.

Observed TP is modeled as the sum of directly
observed dissolved P, P incorporated in phytoplankton
(assumed to be directly proportional to Chl), P associ-
ated with non-living organic matter (VSSnp), and NVSS:

E[TPi] = Pdiss,i + d1Chli + d2VSSnp,i + d3NVSSi. (4)

The 3 coefficients, d1, d2, and d3, quantify the mass of P
in phytoplankton per unit of Chl and the P content of
VSSnp and NVSS, respectively. Like k, these coefficients
are assumed to be log-normally distributed to restrict
them to positive values. The subscript i again refers to
individual samples, and TPi is enclosed by E[.] to indi-
cate that the equation applies to the expected value of
TP for sample i. In contrast to the model for VSS, we
did not log-transform the equation. Instead, the skewed
distribution of observed values for TPi was taken into
account by modeling the residual distribution of these
observed values as a gamma distribution with a shape
parameter of α1 and a rate parameter of α1/E[TPi]. The
mean value of this distribution is E[TPi] and the variance
is E[TPi]

2/α1, so the residual variance is proportional to
the square of the expected value. The parameter α1
adjusts the rate at which residual variance increases
with the mean expected value and is fit to the observed
data.

We specified an identical model for TN, but initial
model fits indicated that the contribution of NVSS to
TN was negligible, and so we excluded this term in the

final model:

E[TNi] = Ndiss,i + f1Chli + f2VSSnp,i . (5)

Here again, the parameters f1 and f2 are specified as log-
normally distributed to constrain them to positive values,
and observed values of TN are assumed to be drawn
from a gamma distribution with a shape parameter of α2.

To further explore the potential for this type of anal-
ysis to provide insights regarding the mechanisms that
determine stoichiometric ratios, we identified Missouri
samples with DIN >50 µg/L. In these samples, sufficient
N was likely available for phytoplankton growth, and
therefore we hypothesized that stoichiometric ratios
associated with phytoplankton would differ in these sam-
ples compared to samples in which DIN was near zero
(Klausmeier et al. 2004a). We refit the models but esti-
mated different values for the coefficients that quantified
N- and P-content of phytoplankton and VSSnp. More
specifically, we expressed our model equations as follows:

E[TPi] = Pdiss,i + d1,kChli + d2,kVSSnp,i

+ d3NVSSi , (6)

E[TNi] = Ndiss,i + f1,kChli + f2,kVSSnp,i , (7)

where the index k indexes samples with low (k = 1) and
high (k = 2) concentrations of DIN.

Prior to analysis, all measurements were scaled by
dividing by their maximum observed value to improve
the efficiency of the Monte-Carlo algorithm used to fit
the equation. We then specified weakly informative pri-
ors for all the parameters. As discussed earlier, all model
coefficients, k, f1, f2, d1, d2, and d3, were assumed to be
log-normally distributed to restrict them to positive val-
ues. Prior distributions for these parameters were spe-
cified as log-normal distributions with mean values of
0 and standard deviations of 8. The value of 8 was chosen
to be several times larger than the expected standard
deviation of any of the coefficients so that the function
of the prior distribution was mainly to steer randomly
drawn samples away from extreme values. Similarly,
the prior distribution of σ1 was specified as a half-Cauchy
distribution with a scale of 2. Initial estimates of the
parameters α1 and α2 were large, and so to improve the
efficiency of the Monte-Carlo sampling we scaled α1
and α2 by a factor of 100 and assigned them weakly infor-
mative half-Cauchy priors with a scale of 2. The prior
distribution for the mean values of VSSnp (i.e., μVSS-np)
was a normal distribution with a mean value of 0 and
a standard deviation of 8. All models were then fit simul-
taneously using the Bayesian modeling software, RStan
(Stan Development Team 2016), and the statistical mod-
eling software R 3.4.2 (R Core Team 2017).
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Because the relationships estimated in the current
models quantify inherent mean stoichiometric relation-
ships regarding P and N content in phytoplankton
cells, these relationships may be similar among different
datasets. To qualitatively test this hypothesis, we com-
pared base relationships estimated in Missouri to TP,
TN, and Chl data collected from lakes across the United
States (US EPA 2010, 2017).

Results

The TP and TN models provided accurate predictions of
observed TP and TN (Fig. 2). Because residual variance
increased with the mean predicted values of TP and
TN, root mean square prediction error (RMSE) exhibited
similar trends, ranging from 4 to ∼20 µg/L for the TP
model, and from 50 to 200 µg/L for TN, mirroring the
predicted increase in residual standard deviation for
the gamma distribution (solid lines in lower panels of
Fig. 2). We also computed 90% posterior prediction
intervals for each sample and confirmed that <10% of
observations of TP and TN deviated from these intervals.

Coefficient values for the base model indicated that on
average, NVSS was 0.099% P by weight, whereas N con-
tent was negligible (Table 1). Mean P and N content in
non-phytoplankton VSS was 0.67% and 6.9%, respec-
tively, which yielded a molar ratio of N:P in VSSnp of

23:1; 90% credible intervals on this ratio extended from
19:1 to 27:1.

Coefficients for Chl in the TN and TP models quan-
tified the ratio between the mass of N and P in phyto-
plankton and the mass of Chl. So, we estimated the
mean mass ratio between N and P within phytoplankton
cells as 5.4/0.61 = 8.8. This mass ratio converts to a molar
ratio of 19 in phytoplankton, with 90% credible intervals
extending from 17 to 23.

The coefficient k in the model for VSS measures the
proportion of the observed VSS mass attributable to phy-
toplankton (as quantified by Chl). If we assume that VSS
concentration can be converted to an estimate of C by
multiplying by a factor of 0.45 (Findlay et al. 1991, Pribyl
2010), we estimate the molar C:P ratio in phytoplankton
as 170:1, with 90% credible intervals of 160:1 and 200:1.

Distributions of TP and TN measurements are
highly skewed, and so these variables are frequently

Figure 2. Predicted TP and TN versus observed TP and TN (upper panels). Root mean square error (RMSE) as a function of predicted
values (lower 2 panels). Dashed lines (upper panels) show 1:1 relationships. Solid line in lower 2 panels shows the increase in residual
standard deviation expected from gamma distribution. Open circles in lower panels show estimated RMSE computed from ∼20 samples
in a bin around the indicated predicted TP or TN.

Table 1. Estimates for model coefficients for the Bayesian
network model. Equation numbers for each model correspond
to those in the text.
Model Coefficient Mean value (90% confidence limits)

VSS (Eq. 2) k 0.092 (0.084, 0.10)
TP (Eq. 4) d1 0.61 (0.54, 0.68)

d2 6.7 (5.9, 7.7)
d3 0.99 (0.70, 1.28)

TN (Eq. 5) f1 5.4 (4.7, 6.1)
f2 69 (61, 78)

64 L. L. YUAN AND J. R. JONES



log-transformed prior to analysis, as are measurements
of different predictor variables (e.g., Chl). In the present
model, the relationships are expressed in terms of the
variables in their original units, and therefore the log-
transformation would apply to the entire sum of model
components. For example, a log-transform applied to
the model for TN would be:

log (E[TNi]) = log (Ndiss,i + f1Chli + f2VSSnp,i). (8)

Hence, modeled relationships between a predictor vari-
able (e.g., Chl) and E[TN] are nonlinear when plotted
in log-log space. Examples of this nonlinear relationship

are illustrated when Chl is plotted against particulate TN
(defined as the difference between TN and dissolved N;
Fig. 3). A limiting relationship between Chl and TN
can be computed by considering the case in which
VSSnp is negligible, in which case we assume that the
term f2VSSnp is zero and write the log-transformed
model equation as follows:

log (E[TNp]) = log ( f1)+ log (Chl), (9)

where TNp is particulate TN. So, in samples in which
VSSnp is small relative to Chl, the relationship between
log(Chl) and log(TN) is a straight line with a slope of 1
and an intercept value of log( f1) (Fig. 3, solid line).

As the contribution of N associated with VSSnp
increases, the relationship between Chl and TNp devi-
ates from the limiting relationship. For example, if we
fix VSSnp at the fifth percentile of its observed distribu-
tion of values, the resulting relationship between Chl
and TNp approaches the limiting relationship quickly
as Chl increases, but at low concentrations of Chl,
the effect of VSSnp is strong enough to reduce the
slope between Chl and TNp to nearly zero (Fig. 3,
“5%” dashed line). For relationships computed using
higher concentrations of VSSnp, the curves begin to
deviate more substantially from the limiting relation-
ship but always approach the linear limit at high con-
centrations of Chl. Overall, the distribution of curves
matches the distribution of the observed samples, lend-
ing support to the appropriateness of the model formu-
lation. The same limiting relationships exist for the
relationships between Chl and VSS and between Chl
and TP (Fig. 4).

Seston contributions to TP and TN varied with time
and by lake. In the example of an oligo/mesotrophic
lake (left panel), dissolved N accounted for ∼80% of
observed TN throughout the summer sampling season

Figure 3. Predicted relationships between Chl and particulate TN
for different levels of VSSnp. Solid line: relationships between Chl
and TNp when VSSnp is negligible. Dashed lines: relationship
between Chl and TNp for different quantiles of VSSnp (as
indicated).

Figure 4. Relationships between Chl and VSS and TPp. Solid lines show estimated limiting relationship between Chl and VSS (left panel)
and between Chl and particulate TP (right panel) in the absence of contributions from any other factors.

INLAND WATERS 65



(Fig. 5). Non-living organic seston accounted for the
majority of the remaining TN, with only a small increase
in phytoplankton-associated N in weeks 24 and 25. Dis-
solved P accounted for ∼50% of observed TP throughout
the summer in the same lake, and the proportional con-
tribution of phytoplankton P was nearly 20% in week 24.
The contribution of inorganic seston to total P was ini-
tially nearly 20% and decreased to lower proportions
over the summer.

In the eutrophic lake (Fig. 5, right panels), phyto-
plankton N and P accounted for much greater propor-
tions of TN and TP. The phytoplankton proportion of
TN and TP increased and decreased with variations in
Chl concentration, indicating that the concentration of
other seston components were much less variable than
the phytoplankton component. As observed with the
oligo/mesotrophic lake, dissolved N still accounted for
a large proportion of observed TN and dissolved P, a
smaller proportion of observed TP.

DIN in 56 of 241 samples was >50 µg/L. Estimates of
N and P concentrations per unit of Chl differed

substantially between low and high DIN samples, but
because a smaller sample size yielded a greater uncer-
tainty for estimates for the high DIN coefficients, none
of the differences was statistically significant (Table 2).
Mean P content associated with phytoplankton (d1)
increased from low to high DIN samples, whereas N con-
tent decreased ( f1). Both P and N content in VSSnp
decreased slightly from low to high DIN samples (d2
and f2). These changes translated into a shift in N:P in
phytoplankton from 21 (90% credible intervals: 18–25)
to 12 (6–19) from low DIN to high DIN samples,
while N:P in VSSnp exhibited a negligible change from
22 (19–27) to 21 (12–33).

Figure 5. Allocation of P and N to different compartments for a mesotrophic lake (left column) and eutrophic lake (right column). Dark
gray: proportion of nutrient attributed to phytoplankton biomass; medium gray: proportion of nutrient attributed to NVSS (TP plots
only); and light gray: proportion of nutrient attributed to non-phytoplankton VSS. Dissolved proportions of N and P account for remain-
ing proportions for each stack of bars.

Table 2. Estimates of coefficients for exploratory model for low
and high DIN samples. Mean coefficient values shown with
90% credible intervals in parentheses.
Model Coefficient Low DIN High DIN

TP d1 0.58 (0.51, 0.65) 0.73 (0.58, 0.89)
d2 7.1 (6.1, 8.0) 6.4 (4.4, 8.5)

TN f1 5.6 (4.8, 6.4) 4.0 (2.0, 6.0)
f2 71 (63, 81) 61 (39, 84)
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Whole seston estimates of N:P (quantified as TNp:
TPp) clustered around a value N:P = 19 estimated for
phytoplankton (Fig. 6). N:P for VSSnp was slightly
higher, and therefore an increase in the proportion of
VSSnp in a sample would be expected to shift observa-
tions slightly above the solid line. Some of the large devi-
ations of values below N:P = 19 can likely be attributed to
samples in which nutrients are replete because phyto-
plankton in these samples may have much lower N:P
(discussed earlier).

The limiting relationships between TP, TN, and Chl
estimated using Missouri data were similar to the quali-
tative limits observed in the national dataset (Fig. 7). The
deviation of the cloud of observations for TN from the
limiting relationships can likely be attributed to the
fact that only TN (rather than TNp) was available from

the NLA dataset, and so observed TN is likely higher
than TNp for all samples because of the contribution
from dissolved organic and inorganic N. The limiting
relationship for TP more closely corresponded to the
lower limits of the distribution of points, suggesting
that the dissolved component of P accounted for a
smaller proportion of TP. Overall, these results suggest
that broadly applicable limiting relationships between
TP, TN, and Chl can be estimated.

Discussion

We introduced a new approach for estimating stoichio-
metric ratios of different components of seston in lakes
and reservoirs. The model accurately predicts variations
in TP and TN among different samples and yields coeffi-
cients directly interpretable in terms of the nutrient con-
tent associated with different components of seston.
Application of this modeling approach can help refine
our understanding of the mechanisms that determine
lake seston stoichiometry and inform the development
of models used to predict Chl from nutrient inputs.

Bayesian network models provided a means of mod-
eling relationships between measurements of different
parameters in a single, internally consistent framework.
The Bayesian model described here builds on statistical
approaches described in earlier studies. In particular,
our current formulation is similar to a statistical
approach for separating seston into living and non-living
components described by Hessen et al. (2003). The cur-
rent approach expands that model to estimate separate
contributions from NVSS and VSSnp and uses gamma
distributions to account for the increase in the variance
of observations with mean values. Our approach is also
similar to a technique for decomposing the contributions
from organic and inorganic seston components

Figure 6. Relationship between TPp and TNp. Solid line: N:P = 19
ratio expected in phytoplankton dominated sample. Filled circles:
samples with DIN > 50 µg/L.

Figure 7. National lakes assessment observations of TP, TN, and Chl. Solid lines are relationships for TPp and TNp estimated from Mis-
souri lakes.
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described by Effler et al. (2014), who estimated the nutri-
ent content of different components by analyzing a small
number of samples dominated by only one constituent.
Our estimates of limiting behavior are more precise
than their approach because we use all the data and a
model formulation that explicitly includes the limiting
relationships that occur when one component of seston
is the dominant contributor (Fig. 3).

Seston stoichiometry

Our analysis highlights how the amounts of N and P
associated with different components of seston (phyto-
plankton, non-living organic material, and inorganic
suspended sediment) contribute to variability in whole
seston measurements of N:P. We found that N:P in
organic non-living seston was only slightly higher than
that estimated in phytoplankton. By contrast, N content
in inorganic seston was negligible (Vitousek and
Howarth 1991), and although P was present, as a propor-
tion of total mass the P content of inorganic seston was
much lower than in organic seston. In samples with large
concentrations of inorganic sediment, however, inor-
ganic seston can contribute to variations in whole seston
P (Effler et al. 2014). Over the summer sampling season,
the contributions of different seston components to TN
and TP varied considerably (Fig. 5), manifested as varia-
tions in whole seston N:P.

Our findings that N:P = 19 and C:P = 170 in phyto-
plankton in our base model were strikingly similar to val-
ues estimated from analysis of whole seston from a global
dataset of lakes (Hecky et al. 1993). In this earlier work,
data were confined to lakes with residence times exceed-
ing 6 months to limit the contributions of allochthonous
seston, and the final values were estimated by regression
of mean N and C content on mean P content across 44
lakes. Our present data were collected from reservoirs
with retention times as low as 0.06 years, and we relied
on modeling to control for the effects of inorganic and
non-living organic matter. The similarity of the ratio
estimates from these 2 contrasting datasets and analyses
may suggest that mean nutrient content in the phyto-
plankton assemblages of different lakes converges to a
single value, but analysis of data collected frommore sys-
tems is required to solidify this conclusion.

Several mechanisms have been proposed that cause
variations in whole seston N:P in addition to the differ-
ences among seston components on which our analysis
is focused. Examples of these mechanisms include nutri-
ent availability (Hecky et al. 1993), light to nutrient ratio
(Sterner et al. 1997), temperature, water residence time
(They et al. 2017), variations in nutrient content within
different phytoplankton species, and variations in

phytoplankton species composition (Martiny et al.
2013). Our model does not exclude consideration of
these other mechanisms. Instead, we suggest that exam-
ining the effects of these different mechanisms on partic-
ular components of seston via analyses similar to that
described here can deepen our understanding of why
N:P varies.

Our exploratory analysis of the effects of nutrient
availability on N:P provides one example of how parti-
tioning P and N among seston components may help
clarify how environmental conditions affect seston stoi-
chiometry. We found that N:P shifted dramatically
from 21 for low DIN samples to 12 for high DIN sam-
ples. This change is qualitatively consistent with predic-
tions of changes in N:P from a state of competitive
equilibrium (i.e., low levels of biologically available nutri-
ents) to a state of exponential growth (i.e., nutrient
replete environments; Klausmeier et al. 2004a). Our
exploratory analysis is only illustrative, however, and
not intended as an exhaustive test of the effects of excess
nutrients. Coupling our analysis of field data with
manipulative experiments would provide more robust
inferences. The type of analysis we describe here may
then help bridge the gap between small-scale experi-
ments and observations gleaned from large-scale moni-
toring data by providing a means of controlling for
some of covariates inherent in field data (Elser and Ham-
ilton 2007). The structure of our Bayesian model allows
the introduction of variations in coefficient values, as in
our exploratory analysis. In cases in which several groups
of samples can be defined, coefficients can be expressed
as a distribution of values characterized by a mean and
variance (Gelman and Hill 2007) and a hierarchical
structure imposed on coefficient values. We used this
approach in our base model to estimate lake-specific
mean values of inferred VSSnp, which improved our
model for VSS. Ultimately, modeling the variations in
nutrient content for different seston components would
improve understanding of which variations in whole ses-
ton N:P can be attributed to differences in the composi-
tion of the seston versus differences in the nutrient
content of different components.

Analyzing differences in the composition of seston
components could also improve our understanding of
the effects of variations in external loading of organic
material and nutrients. For example, differences in
watershed land use (Arbuckle and Downing 2001) and
in the sources of nutrient loading (Downing andMcCau-
ley 2003) have been associated with changes in N:P
observed in lakes. Similarly, atmospheric loading (Elser
et al. 2009) has altered lake N:P, and particulate N:P var-
ies with residence time (They et al. 2017). In these exam-
ples, examining the allocation of nutrients to different

68 L. L. YUAN AND J. R. JONES



seston components (Fig. 5) would likely advance under-
standing the effects of different types of nutrient loading
on seston components.

Predicting Chl from nutrient concentrations

Statistical estimates of relationships between concentra-
tions of TP and Chl and between TN and Chl in lakes
have been fundamental to understanding and managing
lake eutrophication (Jones and Bachmann 1976, Jones
and Knowlton 2005), and our current models provide
relationships between this same set of variables. Our
model differs, however, from traditional nutrient/Chl
models in 2 important ways that reflect our focus on
the elemental composition of seston (Lewis and Wurts-
baugh 2008). First, we used covariates (NVSS and VSSnp)
that accounted for variations in TP and TN, rather than
in Chl. By contrast, most other analyses of nutrient/Chl
relationships have sought to explain deviations in Chl
concentrations from predictions using TP and/or TN.
This interpretation of the nutrient/Chl relationship has
led to investigations of the effects of covariates such as
TN:TP (Guildford and Hecky 2000), zooplankton abun-
dance (Mazumder 1994), lake morphology (Hoyer and
Jones 1983, Phillips et al. 2008), and water transparency
(Jones and Knowlton 2005, Webster et al. 2008).

We believe our model more accurately represents the
processes that govern relationship between simultaneous
observations of TP, TN, and Chl and provides the means
to identify more specific hypotheses regarding the effects
of other factors on nutrient/Chl relationships. For exam-
ple, instead of simply hypothesizing that the presence of
a high abundance of zooplankton grazers reduces Chl
relative to TP, we can identify particular conditions in
which zooplankton would be expected to have the stron-
gest effects on the ratio of Chl to nutrients. In general, as
zooplankton reduce phytoplankton abundance, the
decrease in phytoplankton (as measured by Chl) should
be accompanied by a decrease in the N and P associated
with the phytoplankton component of seston. Other
components of seston that contribute to TN and TP
should be unchanged, so the effects of zooplankton
should track lines associated with nearly constant values
of the other seston components (as plotted in Fig. 3 and
plotted with x and y variables reversed in Fig. 8). Then, in
samples in which phytoplankton is the dominant source
of particulate N and P, we would expect zooplankton
grazing to reduce Chl, TNp, and TPp in the nearly the
same proportions (e.g., change from A to B in Fig. 8),
and the observed ratio between Chl and TNp and
between Chl and TPp would be nearly constant. In sam-
ples in which phytoplankton is not the dominant source
of particulate N and P, however, we would expect that

with higher levels of grazing, the ratio between Chl and
nutrients would decrease (a change from B to C1,
Fig. 8). This effect may be magnified if zooplankton
excretion increases the concentration of non-living
organic seston (a change from B to C2, Fig. 8; Urabe
et al. 2003). Hence, high abundance of zooplankton
would be expected to reduce Chl concentration relative
to nutrient concentrations, but this effect would be
most pronounced in lakes in which phytoplankton is
not the dominant component of seston. Hypotheses for
the effect of other factors on TP–Chl and TN–Chl rela-
tionships could be developed in a similar manner.

The second way our current model differs from tradi-
tional investigations of nutrient/Chl relationships is that
its mathematical formulation is based on untransformed
measurements. By contrast, traditional nutrient/Chl
models have been based on log-transformed variables.
For example, if we apply the conventional approach to
the model for TP, the following model equation results:

log (TP) = b1 + Pdiss + b2 log (Chl)

+ b3 log (NVSS)+ b4log(VSSnp)

+ 14, (10)

In this more commonly used model equation, the model
coefficients become exponents of the predictor variables
when the equation is expressed in original units and TP
is modeled as the product rather than the sum of the
different predictors. In this latter formulation, the
model coefficients are not immediately interpretable in
terms of nutrient content. Furthermore, coefficients are
linear, and multiple linear regression can be used to

Figure 8. Hypothesized effect of zooplankton grazing on rela-
tionship between TNp and Chl. Solid line: predicted relationship
between TNp and Chl assuming a constant value of VSSnp at the
median value of VSSnp. Dashed line: predicted relationship
between TNp and Chl, assuming VSSnp equal to the 75th percen-
tile of observed values.
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estimate their values, but the limiting behavior discussed
earlier when a particular seston component dominates
does not occur. Identifying these limits in the relation-
ships between TP, TN, and Chl may be particularly
important in broadening the applicability of models pre-
dicting Chl from nutrients. Indeed, our finding that the
limiting relationships estimated in Missouri were quali-
tatively similar to the limits of observations collected in
a continental scale dataset suggests that, at least at
large spatial scales, assuming constant values for phyto-
plankton P and N content provides a useful
approximation.

Uncertainties and conclusions
A few aspects of the current analysis may have intro-
duced uncertainty and error into the results. We used
Chl as a proxy for phytoplankton biomass, so any seston
components that covaried with Chl would be treated in
the analysis as if they were live phytoplankton. For exam-
ple, nutrients associated with autotrophic organic detri-
tus that increases with phytoplankton biomass would
be indistinguishable from phytoplankton biomass. Fur-
ther comparisons between the present analytical
approach and direct measurements of different seston
components would help quantify the magnitude of this
error. Chl content in phytoplankton also can vary
among species and with changes in environmental con-
ditions (Hecky et al. 1993, Kasprzak et al. 2008), and esti-
mating nutrient content in different types of lakes and
different conditions will help quantify the magnitude of
this variability.

Estimates of C content introduce another source of
uncertainty to the current estimates of seston stoichiom-
etry. We estimated C content as a fixed fraction of vola-
tile suspended sediment, but this fraction can vary with
conditions (Grove and Bilotta 2014). Others have
employed different approaches for measuring organic
C, including using a relationship between phytoplankton
cell volume and C content (Hessen et al. 2003) and direct
measurements of elemental C (Urbansky 2001). Concur-
rent measurements of VSS and direct measurements of
elemental C would provide the most robust test of the
method used here to estimate C.

Measuring dissolved and particulate fractions of N
and P requires an arbitrary decision regarding the pore
size of the filters because the dissolved fraction is
defined as any material that passes through the filter
(Solórzano and Sharp 2003). Similarly, suspended sedi-
ment and Chl are measured from material retained by
the filters. Hence, the current findings with regard to
the nutrient content of different seston components
may change with data collected with finer or coarser
filters, or with more involved measurements of dissolved

nutrients (Karl and Björkman 2015). Indeed, nephelo-
metric measurements of the turbidity of filtrate in the
present data suggest that a substantial amount of sus-
pended sediment passes through the 1.5 µm filter
(Knowlton and Jones 2000). Because data used here
were internally consistent, such that dissolved and par-
ticulate nutrients, suspended sediment, and Chl were
all measured using filters with comparable pore sizes,
the estimates of nutrient content of various seston com-
ponents are robust. Comparisons of the present results
with other studies, however, should take into account
the possible effect of different filter pore sizes.

The current statistical approach can be applied to
measurements easily acquired in routine monitoring, a
feature that allows broad use in analyses of both field
observations and data from experimental manipulations.
Collecting auxiliary information regarding the stoichi-
ometry of different seston components could also
enhance interpretation of the model results. For exam-
ple, laboratory methods for separating different compo-
nents (Hamilton et al. 2005, Effler et al. 2014) yield
complementary data that, if conducted simultaneously
with the current analysis approach, would provide data
to further validate the approach.

In conclusion, we showed that we can accurately
model TP and TN concentrations in lakes as a function
of Chl, suspended sediment, and dissolved nutrients.
These models provide insight into the nutrient content
of different components of seston, which in turn can
be interpreted with regard to the values of different envi-
ronmental factors. The present models also inform
efforts to develop eutrophication models that predict
Chl as a function of nutrient loads.
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