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Abstract

Knowlton, M'F. and J.R. Jones. 2006. Temporal variation and assessment of trophic state indicators in Missouri reservoirs: Implication for
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The magnitude and management implications of temporal variability in trophic state metrics was simulated by measuring mean values of
total phosphorus (TP), total nitrogen (TN), chlorophyll (Chl) and Secchi depth (SD) in summer (May-August) and detecting trends in these
variables in a virtual lake undergoing gradual (doubling over 20 years) and abrupt (doubling over two years) change. Numbers of samples
required (samples per summer over number of summers) to adequately detect these rates of change were used to show the size and management
implications of temporal variability. Long-term data from 116 Missouri reservoirs, including eight summer data sets based on daily sampling,
provided estimates of autoccrrelation and variation within and among summers (seasonal and year-to-year variance) used in Monte Carlo
simulations to evaluate sampling requirements. In simulations based on median variance, obtaining long-term means with 95% confidence
intervals spanning less than a factor of two took from three years (TN) to eight years (Chl) with monthly samples (n=3 per summer). For a
lake with mean values doubling every 20 years, linear regression had >75% chance of detecting the trend after 13 years of monthly samples
for TN, but Chl required >20 years. For a lake with Chl doubling over two years, at least six years of pre-change data and 11 years of post-
change data were required before monthly sampling gave >75% probability of detecting the trend. Increasing sampling to weekly frequency
(n=16 per summer) in most scenarios reduced required duration of sampling by <2 years. Variability data from lakes in other regions fall in
the range exhibited by Missouri reservoirs. Results emphasize the need for Jong-term data to fulfill lake management needs and suggest that
ordinary lake monitoring typically will not detect trends in individual lakes.
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The central focus of lake assessment is to determine the
current trophic state of a study lake and detect whether
conditions are changing over time. Lake monitoring for
these purposes is conducted against a backdrop of temporal
variation (Knowlton ef al. 1984, Knowlton and Jones 1995).
Unraveling mechanisms underlying the wax and wane of
algal populations, flux of nutrients, changes in transparency
and other lake features have long been studied as a thrust
of basic aquatic ecology (Reynolds 1997). This body of
information suggests lakes are constantly changing over
time; conditions vary in the short-term measured in hours
or days and in the longer-term measured in seasonal shifts
or year-to-year fluctuations in response to weather or other
naturally stochastic processes (Harris 1980). Thus, knowing
whether trophic state metrics in a particular lake are changing
over time requires distinction between fluctuations caused
by “ordinary” temporal variability and directional changes
resulting from human intervention (intentional or not).

Ordinary temporal variability is familiar to any lake observer;
all parties recognize recurring seasonal patterns and short-
term responses to storms. Less familiar are the statistical
features of temporal variability needed to invoke or interpret
lake management practices. The literature on temporal vari-
ability is mathematical and somewhat abstract (Knowiton
et al. 1984, Marshall er al. 1988, Smeltzer et al. 1989,
France and Peters 1992, Larsen et al. 1995, 2001, Terrell
et al. 2000). As such, temporal variability is not commonly
considered in lake assessments and there is a danger of lake
practitioners being under-informed about the magnitude of
ordinary fluctuations in water quality variables and how
temporal variation might interfere with answers to basic lake
management questions.

Increased knowledge of “ordinary” temporal variation is
important in the United States as we enter a new era in lake
management based on development and implementation
of federally mandated nutrient criteria (Gibson et al. 2000,
Knowlton and Jones 2006). Questions about ordinary vari-
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ability should be addressed when applying numeric standards.
For example, can compliance with a nutrient standard be
evaluated using measurements from a single year, or are sev-
eral years of data needed to “average out” ordinary variability.
The conundrum stems from the fact that nutrient standards
are static while lakes are dynamic. Awareness of the extent
of lake dynamics should be integral to all aspects of lake
management, including interpretation of nutrient criteria.

One way to raise awareness of temporal variability is to il-
lustrate its magnitude within the context of lake management.
In temporally variable systems multiple samples are needed
to determine average conditions and changes in individual
lakes, and estimating the number of samples required to
answer such questions provides a practical illustration of
temporal variability. This study illustrates some key quantita-
tive features of temporal variation and assessment of trophic
state by addressing these questions using several scenarios
designed around simulations of a typically variable lake. Vari-
ability data from Missouri reservoirs were used to calibrate
the answers, but these data encompass a range that includes
lakes in other regions.

The first hypothetical scenario involves estimating trophic
state in terms of average total phosphorus (TP), total nitro-
gen (TN), chlorophyll (Chl) or Secchi depth (SD) for a lake
not undergoing any long-term change. The second and third
scenarios involve detecting a change in these variables in a
lake that is gradually changing (by two-fold over 20 years)
or abruptly changing (two-fold over two years). Confidence
intervals of 95% were used as the measure of how well
trophic state has been estimated (first scenario), and simple
regression was used as the method of detecting change
over time in the second and third scenarios. These specific
procedures were used not because they are necessarily the
optimal statistical techniques for answering such questions,
but because they are universally familiar. To evaluate these
scenarios a “Monte Carlo” approach was used wherein a
data series was created simulating 20 consecutive summer
sampling periods from a Missouri reservoir that matches
the major statistical features of real lake data. The imitated
statistical features included the amount of variability within
and among summers and autocorrelation between measure-
ments taken close together in time. The simulated sampling of
these time series were at rates of 3, 6 or 16 times per summer
(roughly monthly, semi-monthly and weekly) over periods
of 2-20 years to generate annual averages that were used to
construct confidence intervals or perform regression analysis.
Each sampling scenario was repeated with 1000 simulated
data sets to evaluate typical performance.,

Statistical formulations used are a form of power analysis
(Thomas 1997, Urquhart et al. 1998) and are sound for the
simplified scenarios considered. The intention is not, how-
evet, to provide a rigorous formula for design of sampling

schemes or to prescribe how best to detect temporal trends
in lakes. The only goal is to raise awareness of temporal
variability as an important characteristic of lakes with clear
implications for management. The estimates of “how many
samples” developed from these scenarios are a means to
that end.

Data and Analysis

Simulations

Simulation data sets consisted of series of “observed val-
ues” (OVs) for a simulated parameter representing daily
measurements for 20 consecutive “summers” of 108 days
(16 May-31 August). OVs were generated from “annual
expected values” (AEVs) representing conditions specific
to that year, which in turn were generated from “long-term
expected values” (LEVs). LEVs represent the trend (or lack
thereof) in the data during the 20 year series. In simulating a
lake undergoing change, LEVs were a function of the sam-
pling date. In the “gradual change” scenario, LEVs increased
at a constant (arithmetic) rate over the 20 years, while in the
“abrupt change” scenario, LEVs were constant before and
after a two-year period of rapid increase. In both scenarios,
LEVs doubled during the sequence (Fig. 1a). In the third
(no-change) scenario, LEVs remained constant.

AEVs paralleled LEVs but were offset by an amount cho-
sen randomly to represent year-to-year variation around the
overall trend (Fig. 1a). The amount of offset was chosen for
each year in the 20-year series from a random normal distri-
bution with mean zero and a standard deviation of v, (Fig.
1b). OVs were calculated as an autocorrelated time series.
OVs consisted of the AEV for a given date plus or minus
a residual (r). The first residual in each summer series (r,,
representing the observation for 16 May) was determined
randomly from a normal distribution with mean of zero and
a standard deviation = V. Each subsequent residual was
calculated by multiplying an autocorrelation coefficient, “p”,
times the previous residual and adding an error term drawn
from a random normal deviate with mean zero and standard
deviation =V _ (Fig. 1b).

“Sampling” from simulated data sets was done at three levels
roughly representing monthly, semi-monthly and weekly
samples (n=3, 6, and 16 per summer, respectively). Weekly
samples consisted of every seventh OV in each series (days
1,8, 15, etc.). Monthly and semi-monthly samples were taken
at fixed intervals of 31 and 16 days, respectively, with the
starting date picked randomly from among the first 44 (n=3)
or 28 (n=6) days of each summer series.
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Figure 1.-Simulation features. (a) Long-term expected values
(LEV’s) for no-change, gradual and abrupt scenarios and annual
expected values (AEV’s) for gradual scenario. (b). Example of
estimation of observed values (OV’s) in summer time series.
Values of “rand” are random numbers drawn from a normal
population with a mean of zero and standard deviation of 1
(RANNOR function in SAS 8.02). Residuals and variance
components are described in the text.

Calibration

Performance of simulations depends on values of Vy, V., V,
and p. Values of these parameters were selected to match
the median variance characteristics of data from an annual
Missouri-wide lake assessment program conducted during
1989-2003 in which measurements of TP, TN, Chl and SD
were collected from 134 Missouri reservoirs. Sampling
began in mid-May and ended in late-August each year and
included 3-4 samples per water body. Initially the total data
set comprised 1265 lake-years of data with at least four years
of data per reservoir. Individual reservoir data sets were
screened to eliminate those with possible long-term trends.
Two reservoirs were excluded because of changes in pelagic
conditions related to macrophyte control measures. Sixteen

waterbodies were excluded because regression showed sig-
nificant (p<0.01) temporal trends among seasonal means of
one or more variables. The final data set consisted of 1085
lake-years of data from 116 reservoirs. Samples were col-
lected from the surface layer at a location near the dam in
all cases. SD was measured with a 20-cm black and white
disk. Water samples were analyzed for TP (Prepas and Rigler
1982) and TN (Crumpton et al. 1992), and Chl (Pall A-E
glass fiber filters; Sartory and Grobbelaar 1984, Knowlton
1984). Sampling and analytical methodology were consistent
throughout.

Lake survey data were submitted to a random effects ANO-
VA applied to individual reservoirs (Snedecor and Cochran
1980) to quantify two components of variation: variation
among sampling dates within individual summer seasons
(seasonal variation) and variation in seasonal averages from
one year to another (year-to-year variation). This analysis
follows Knowlton ez al. (1984) except for the omission of a
minor adjustment for sampling error due to variation among
replicate subsamples. Seasonal and year-to-year variation
are equivalent to the simulation parameters V_and V,, re-
spectively, and median values were used in the simulations.
Similarly large-scale estimates of autocorrelation parameters,
V_and p were lacking, but initial values were obtained from
analysis of eight seasonal data sets, each based on sampling
over 108 consecutive days. Six of these were from Lake
Woodrail, a small impoundment in Columbia, Missouri,
which was sampled daily from 19 May 1992 through 19
December 1996 (TP, TN and Chl only; Jones and Knowlton
2005). Lake Woodrail, together with Little Dixie and Rocky
Fork lakes, were also sampled daily from 13 May through
27 August 2004. Autocorrelation parameters were obtained
from these time series using PROC AUTOREG in SAS and
averaged as starting values for V_and p. These estimates were
then adjusted incrementally until median values of seasonal
and year-to-year variation produced by simulations under
the “no change” scenario matched median estimates from
the 1085 lake-years of survey data.

All data were transformed to base,  logarithms before analy-
sis and simulations conducted on a log,, scale, except that
expected values (LEV and AEV) were estimated before
transformation so that changes over time would be linear
(arithmetic). All simulations were repeated 1000 times with
median values presented in the results. Simulated temporal
trends were tested with ordinary least-squares regression.
Simulations and other analyses were conducted using PC-
SAS (version 8.02). Variability estimates and confidence
limits in this analysis are in log 10 units. To provide a familiar
scale, variance is expressed in the text as approximate coef-
ficients of variation (“CV”") scaled as a percent of the mean
and calculated as:

“CV” =50 x[(10" -1) + (1-10)]
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where v=V,V or V_(Knowlton et al. 1984). “CV”s rep-
resent an averaging of the arithmetically asymmetrical tails
produced by back-transformation. For example, +0.108 in
log, , units back-transforms to 0.78 (-22%) and 1.28 (+28%),
which average to +25%.

Results

Parameters used in simulations (Table 1) differed among the
four trophic state variables simulated. Median seasonal and
year-to-year variation for Chl was more than twice that for
TN, with TP and SD intermediate. Seasonal variation (within
individual summers) was greater than year-to-year variation
(among summer seasons over time) for all four variables.
With one exception, values of autocorrelation parameters
used in simulations were greater than average estimates from
lakes Woodrail, Little Dixie and Rocky Fork (Table 2). In the
cases of error variance (V) for TN and the autocorrelation
coefficient (p) for TN and SD, values obtained by iteration
were above the range of the measured values. Given the
small number of estimates available for this analysis (eight
for TP, TN and Chl; three for SD) and the fact that six of the
eight data sets were from one water body, this discrepancy
is probably negligible.

Examples of 20-year time series of Chl data simulated under
the “no change”, “gradual change” and “abrupt change”
scenarios (Fig. 2) illustrate the large magnitude of temporal
variation characteristic of Missouri reservoirs. Within sum-
mers, order-of-magnitude variation of Chl is typical. In the
eight data sets based on daily sampling, for example, the
median seasonal variation in Chl (+57%) closely matched the
state-wide median (+59%; Table 1). In these eight data sets
(Fig. 3) the range of Chl in summer (maximum/minimum)
averaged 18-fold (range 8-32-fold). In contrast, TN varied by
an average slightly over two-fold (range 1.9-3.2-fold). The
often extreme temporal variation of these variables tends to
obscure gradual changes in average conditions (Fig. 2a) and
interferes with quantification of lake trophic state.

Simulation 1 — Measuring Trophic State

Temporal variability in our data suggests observations over
several summers are needed before the “average” condition
of a lake can be reliably estimated. This inherent variation
leads to the obvious question of how many samples per season
over how many years must sampling continue to estimate
the long-term means of TP, Chl, TN or SD within a given
range? To address this question we simulated 20 consecutive
summers of daily OVs under the “no change” scenario (Fig.
1a). From this series, subsamples of OV's were taken at rates
of 3, 6 or 16 samples per season in consecutive years. Means
and 95% confidence limits (CL,,) were calculated by first

Table 1.-Medians of seasonal and year-to-year variance in
take survey data (as approximate coefficients of variation) used
as parameters in Monte Carlo simulations. Data are from 116
Missouri reservoirs (1085 lake-years).

Seasonal (V)

Year-to-year (V)

TP 30% 20%
N 21% 12%
Chl 59% 25%
SD 35% 19%
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Figure 2.-Examples of simulated 20-year series of 16 May-31
August data based on median variability of Chl. Solid lines are
the long-term expected values (LEV’s). (a) no change scenario;

(b) gradual scenario (doubling over 20 years); (c) abrupt scenario
(doubling during two years).
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Table 2.-Means and ranges of autocorrelation statistics from time-series data for lakes Woodrail, Rocky Fork and Little Dixie and

autocorrelation values used in simulations.

autocorrelation (p)

error variance (V)

n mean range simulation mean range simulation
TP 8 0.71 0.32-0.89 0.84 14% 10-63% 16%
TN 8 0.53 0.30-0.69 0.71 12% 9-14% 15%
Chl 8 0.73 0.47-0.86 0.83 33% 23-51% 32%
SD 3 0.67 0.58-0.71 0.85 15% 11-19% 19%
Woodrail Rocky Little
800% }- . Fork Dixie - . .
= R averaging data by summer and using these seasonal means
S 0% y ! X N ! 1 toestimate the overall mean and CL,.
E wowp © 3 1 H 4 ¥ P
] ] f : ~ % 3 ‘ } Simulations of TP (Fig. 4a), show confidence intervals nar-
R 0y g 3 :1 % i g | rowing rapidly during the first 4-8 years and more gradually
E Swf § ., & % f‘!i L 1 afterward. Chl, having the greatest variability both within
O M . {! H . : . ..
5% - v { and among years, yielded the worst precision. Confidence
| |  intervals for Chl were more than twice as wide as for TN (Fig.
92 93 94 95 96 04 04 04 4b) with TP and SD intermediate. With the lowest overall

Figure 3.-Time series of summer Chi (as % of mean Chl) in daily
samples from lakes Woodrail (1992-1996, 2004), Rocky Fork
(2004) and Little Dixie (2004).
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Figure 4.-Upper and lower 95% confidence limits as a function
of years sampled and sampling frequency for simutations of TP
(a) and TN and Chl (b) under the “no change” scenario. Each
data point represents the median of 1000 simulations. Reference
lines show ranges of 1.5-, 2- and 3-fold between upper and lower
confidence limits (upper/iower).

variability, TN could be estimated within a factor of two
(upper CL,/lower CL,,) with monthly sampling (n=3) over
only four summers. For TP and SD, five summers would be
required to achieve the same level of precision, and for Chl,
eight summers would be needed (Fig. 4).

Chl had by far the greatest seasonal variance (Table 1) and
thus benefited most from increasing within season sampling
frequency. Compared to sampling monthly (n=3), sampling
weekly (n=16) for Chl took two years off the time required
to estimate the mean within a two fold range (Fig. 4b). For
the other variables, however, weekly sampling saved only
one year. For all four variables, increasing the span of years
sampled improved precision much more efficiently than
intensifying sampling within seasons. For example, 10 sum-
mers of monthly samples (30 total samples) was roughly
equivalent to seven summers of weekly samples (112 total
samples) for all four variables.

Simulation 2 — Detecting Changes

A major function of lake monitoring is to detect changes
over time. In a second set of simulations we created series
of OVs based on gradually or abruptly changing expected
values (e.g., Fig. 1) and subsampled the daily OVs at rates of
3, 6, or 16 times per season in consecutive years. A seasonal
mean was calculated for each year and regression analysis,
with time as the independent variable, used to determine
significant trends among seasonal means.

In a reservoir with median variability, the gradual doubling
of a trophic state variable over 20 years is a trend that may
not stand out clearly against the background of seasonal and
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yeat-to-year variation (e.g., Fig. 2b). Thus, in our simulations,
sampling proceeded for 11 to >20 years, depending on the
trophic state parameter and sampling intensity, before regres-
sions had a high (>75%) probability of detecting the increase
(Fig. 5). Differences in sampling intensity had similar effects
on TN, TP and SD. The number of years required to achieve
a 75% detection rate decreased by two when sampling fre-
quency increased from monthly to weekly. With monthly
sampling, a 75% detection rate required 13 years for TN
and 17 years for TP and SD. For Chl, 20 years of monthly
sampling provided only a 57% probability of detecting the
trend, compared with probabilities of 73% and 81% for semi-
monthly and weekly sampling, respectively (Fig. 5).

In comparison with gradual changes, an abrupt change (Fig.
2¢) was more readily detected, provided sufficient data were
collected prior to the onset of change. For a two-fold increase
occurring in the middle of 20-year time series (during years
10 and 11), the trend was likely detected (>75% probability)
the second year after the change was complete for TN (Fig.
6a) and in the third year after the change for TP and SD
(Table 3), irrespective of sampling frequency. For Chl, the
75% threshold was achieved 4, 5, and 7 years after the change
for weekly, semi-monthly and monthly sampling frequencies,
respectively, (Fig. 6a).

Probability of detecting an abrupt change, however, partly
depended on the span of sampling prior to the change. If only
two years of data were collected before the change, no amount
of subsequent sampling would provide more than =70%
chance of detection for TP, SD or Chl (e.g., Fig. 6b). The low
temporal variability of TN, however, would allow detection
of change within only 2-3 years of its completion (Fig. 6b).
For TP and SD at least three summers of pre-change data
were required to insure that subsequent sampling would even-
tually have a high (>75%) probability of detecting change.
With weekly sampling of Chl, a minimum of four years of
pre-change data would be required, but with semi-monthly
and monthly sampling, pre-change data from at least five and
six years, respectively, would be needed and the detection
rate would not exceed 75% until six years after the change
occurred (Table 3).

Discussion

Variance in Other Regions

Alllakes in this study are artificial impoundments. To assess
whether temporal variation in these water bodies is similar
to natural lakes and reservoirs in other regions, estimates
of seasonal and year-to-year variation were compiled from
other multi-lake studies. We were unable to find comparable
estimates of autocorrelation parameters (Table 2), although
autocorrelation is a well known feature of limnological time
series (Prairie and Duarte 1996).
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Figure 5.-Percent of simple regressions showing significant
(p<0.05) increases in seasonal mean TN or Chl over time as a
function of years sampled and sampling frequency simulated
under conditions of the “gradual change” scenario (doubling over
20 years).
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Figure 6.-Percent of simple regressions showing significant
(p<0.05) increases in seasonal mean TN or Chi over time as a
function of years sampled and sampling frequency simulated
under conditions of the “abrupt change” scenario (doubling over
two years). (a) Increase occurring in years 10 and 11 of the 20
year series; (b) Increase occurring in years 3 and 4 of the 20 year
series.
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Table 3.-Years of pre-change and post-change sampling required to reach a 75% probability of detecting a significant change by simple
regression (positive slope, p<0.05) in simulations of an abrupt two-fold increase over two years given different within-season sampling
frequencies. The infinity symbol (o) indicates that probability becomes asymptotic at <75%. Total years of sampling equal two plus the

sum of pre- and post-change years.

years of years of post-change data to reach 75% detection rate
pre-change data monthly n=3 semi-monthly n=6 weekly n=16
TP 2 o o oo
3 5 4 3
9 3 3 3
TN 2 3 2 2
9 2 2 2
Chl 2 ) [ o
4 [o] e} 6
5 oo 6 4
6 11 5 5
9 7 5 4
SD 2 oo o0 o
3 o0 4 3
9 3 3 3

In some instances authors estimated seasonal (June-August
or April-October) variances with untransformed data and
presented regression models depicting the relationship of
variance to the mean. Walker (1985), Marshall ef al. (1988),
and France and Peters (1992) have all published variance-
mean regression models for Chl or TP for north-temperate
natural lakes. In each case, seasonal variation in Missouri
reservoirs was significantly less (paired t-test, p<0.001) than
predicted by the published models. For Chl, the models of
Walker (1985), Marshall ez al. (1988), and France and Peters
(1992) overestimated seasonal variation by median amounts
of 5%, 14% and 5%, respectively, calculated as the difference
between predicted and observed “CV”’s. For TP, the France
and Peters (1992) model overestimated seasonal variance
by a median of 5%. These median differences were small
compared to the huge range of individual values, suggesting
seasonal variance in Missouri reservoirs is comparable to that
in the natural lakes included in these studies.

Other authors provided median or mean estimates of variance
in tables, figures or in the text. We recalculated these vari-
ances as “CV” values (Table 4). For studies in which year-to-
year variation was decomposed into coherent (synchronous
variation among lakes in a group) and lake-specific variance
(Larsen et al. 1995, 2001) we summed the two components
to estimate year-to-year variance. Most published variances
were in natural log or log,  units, but Larsen ef al. (1995) used
untransformed data for SD so we calculated conventional
coefficients of variation (square root of variance/mean) for
this comparison.

Several estimates of seasonal and year-to-year variance were
available for TP, Chl and SD. Only one other study (Florida

lakes; Terrell er al. 2000) provided variance estimates for
TN. Among the other studies cited, many differences in
specific sampling and analytical techniques arise, but all
were based on seasonal (mostly summer) samples except the
study of Terrell ez al. (2000), which involved year-around
sampling.

Except for TN, all variance estimates covered wide ranges.
This finding was especially true for year-to-year variance of
Chl, which ranged from +14% for Northeastern lakes sampled
in the EMAP study (Larsen et al. 2001) to +76% for New
York lakes as presented in Larsen et al. (1995). In most stud-
ies, Chl had higher variance than TP or SD. In Florida, as in
this study, TN had lower seasonal and year-to-year variation
than the other parameters.

In general, variance estimates for Missouri reservoirs were
well within the range of other studies except for seasonal
variation of SD, which was +6% greater than the next high-
est value. Among the four parameters, median year-to-year
variation for Missouri reservoirs ranged from +12% for TN
to +25% for Chl (Table 1). Among the data for other regions,
only two of 23 estimates of year-to-year variance (Florida ex-
cluded) were below this range, while seven of 23 were above.
As demonstrated by the preceding simulations, year-to-year
variance is crucial to the precision of lake monitoring data.
Based on this interregional comparison, the median values
for Missouri seem to cover a large part of the likely range of
year-to-year variance for this group of parameters, but may
be somewhat conservative except for SD. Thus our analysis
based on Missouri medians seems unlikely to overstate the
importance of temporal variance.
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Table 4.-Seasonal and year-to-year variance as “C\”s from this study and the literature.

TP Chl » SD

V, v, Vv, v, vV, v,
Missouri, Iowa, Minnesota® 27% 13% 45% 20%
CE Reservoirs® 39%
Vermont® 14% 44% 23% 17% 9%
Minnesota? 25% 49% 18%
CE Reservoirs? 27% 64% 28%
Vermont® 34% 49% 44% 17% 17%
New York® 41% 21% 73% 76% 24% 22%
Minnesota® 54% 36% 44% 45% 26% 19%
Maine® 20% 20% 62% 35% 16% 12%
Florida’ 28% <14% 52% <22% 24% <14%
Northeastern U.S.A .8 41% 40% 68% 14% 29% 0%
This Study 30% 20% 59% 25% 35% 19%

* From Table 3 in Knowlton ez al. 1984; June-September data from 121 reservoirs and 67 natural lakes, 313 lake-years 1-6 years per lake.

®From Table 2 in Walker 1985, April-October data from Corps of Engineers reservoirs, 258 station-years.

© From Figure 5 in Smeltzer ef al. 1989; Spring TP data (125 lakes, 738 lake-years, 2-11 years per lake), June- -August Chl (55 lakes, 298 iake-years,

1-11 years) and SD (56 lakes, 335 lake years, 1-9 years per lake).

4 From Figure 7 in Smelizer ez al. 1989.

< From Figure 2, Table 4 and Table 3 in Larsen et al. 1995; July-August data, 7-86 lakes, 32-774 iake-years, 4-11 years per lake depending on state and
parameter. CV’s for SD are arithmetic coefficients of variation estimated from variance (untransformed data) and mean SD. Year-to- year variance
taken as the sum of “year” and “lake x year” variances, seasonal variance taken as “index” variance.

f From page 192 in Terrell et al. 2000; Year-round data from 71 lakes, 4-11 years per lake. Year-to-year variation was not corrected for seasonal
variation and is thus less than stated. Seasonal and year-to-year variance for TN was also given as +19% and +11%, respectively.

¢ From Table 2 in Larsen et al. 2001; July-August data from a random sampling of lakes in New England, New York and New Jersey in the EPA
Environmental Monitoring and Assessment Program (EMAP). Year-to-year variance taken as the sum of “year” and “interaction” variances, seasonal

variance taken as “residual” variance.

Trophic State Assessment and Monitoring

The doubling (or halving) of trophic state variables like TP
or CHL seems like a change that should be detected by rou-
tine lake monitoring programs. The logic of a factor-of-two
scale was incorporated in the Carlson trophic state index,
where each 10-point decade represents a doubling of algal
biomass (Carlson 1977) and is a recognized metric in lake
management. But factor-of-two fluctuations are a fraction
of the ordinary “noise” of short-term temporal variability in
lakes. In our data sets based on daily samples (Fig. 2), Chl
usually varied by >10-fold during May-August, and these
results seem typical. Given the potentially large variability
of rainfall and other external conditions, year-to-year fluc-
tuations must also be expected (de Hoyos and Comin 1999).
Distinguishing a real change in lake trophic state requires
measurements encompassing enough “ordinary” variation
to assess the long-term average condition of the lake. How

large is “ordinary” variation and what does that imply about
quantifying lake trophic state?

Temporal variability during summer, “seasonal variability,”
has been quantified in several studies representing thousands
of lake-years (Trautmann ez al. 1982, Knowlton et al. 1984,
Walker 1985, Marshall er al. 1988, Smeltzer et al. 1989,
France and Peters 1992, Larsen er al. 1995, 2001, Terrell et
al. 2000). Published median or average estimates of variance
are mostly within a factor-of-two range for a given parameter
(Table 4), with Missouri reservoirs approximating the range
for other regions. In quantifying trophic state, however, sea-
sonal variation is less an impediment than variation among
years. Obviously, the number of years of data needed to
measure trophic state depends on the magnitude of year-to-
year fluctuations. Year-to-year variance, however, is more
difficult to quantify than seasonal variability because long
term data sets spanning several years per lake are required.
Also, year-to-year variance measures variability among
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seasonal averages estimated with (often large) uncertainty.
Consequently, estimates of year-to-year variance are quite
imprecise (Knowlton et al. 1984); therefore, published es-
timates of year-to-year variability are less consistent than
those for seasonal variance, spanning ranges of three-fold
or greater (Table 4). Much more information of this type is
needed before a clear assessment can be made of truly typi-
cal amounts of “ordinary” variation. At present, we can only
look at what seems to be representative range.

In the Missouri data, TN has low temporal variability com-
parable to some of the lower variability estimates for TP and
SD depth in the literature (Table 4), For a parameter with
low variability, results of our simulations suggest measur-
ing trophic state within a two-fold range (95% confidence
interval; Fig. 4) would typically require as few as 12 total
samples (three per summer over four summers). With low
variability, an abrupt two-fold increase in a parameter (Fig.
6) would be readily detected soon after it occurred, even
with a minimal amount (two summers) of pre-change data.
In contrast, gradual changes are inherently difficult to detect
in variable systems. In our “‘gradual change” simulation (Fig.
5) TN increased by >50%, 11 years into the transition, before
weekly sampling in consecutive summers (176 total samples)
provided a high probability of detecting a change.

Chl had the highest temporal variability of the trophic state
parameters. In simulations, measuring mean Chl within a
factor of two required about twice as much data as did TN.
Three samples per summer for eight years or six samples per
summer for six years were required (Fig. 4), and detecting
changes was correspondingly more difficult. Detecting an
abrupt doubling of Chl required more observations before
and after the change than TN (Fig. 6), and a gradual dou-
bling of Chl over 20 years was not readily detectable with
monthly or twice-monthly sampling until after the change
was complete (Fig. 5). Given that mean Chl is often used to
assess lake trophic state and is the key response variable to
eutrophication, it is discouraging to consider the potential
difficulty of detecting its change. Additionally discouraging
is that year-to-year variation of Chl in Missouri was much
less than in some published estimates (Table 4). It seems
that determining average Chl within a factor of two maybe
a large undertaking for some lakes.

An obvious practical implication of these results is that mul-
tiple years of data are needed to provide even moderately pre-
cise assessments of lake trophic state. Estimating TP within a
factor of two is a reasonable goal for a minimal assessment.
Our simulations show that five summers of monthly samples
(15 total observations) represents the smallest commitment
of resources required to reach that goal in a lake of typical
variability. Six summers of monthly samples, the minimum
recommended by Molot and Dillon (1991), would usually
estimate TP within +25% (a 1.67-fold range). But these esti-

mates are based on median variances, so we can assume that
these sampling regimes be adequate for only half the lakes
considered. For TP, a third of Missouri reservoirs exhibited
year-to-year variance greater than the median for Chl (Table
1) and would require correspondingly more data (>8 summers
of monthly samples) to reach the factor-of-two goal. The Mis-
souri data are largely based on monthly samples, and 38% of
reservoirs with <7 summers of data (n=37) have confidence
intervals for TP >2-fold, whereas 99% of impoundments with
=8 years of observations (n=79) have confidence intervals
less than two-fold. Thus broadly applying even a minimal
standard of precision for trophic state assessment is likely to
require long-term monitoring.

Another practical implication is that changes in lake trophic
state are not likely to stand out clearly from the noise of or-
dinary variation unless they are large or rapid. Some classic
instances of trophic state alterations have been both. In Lake
Washington summer SD decreased by nearly half during the
1950s and by half again during the early 1960s with increased
inputs of wastewater (Edmondson 1972). SD subsequently
increased by >5-fold in the decade following wastewater
diversion (Edmondson 1994). Of 16 lakes cited by Sas (1989)
showing significant declines in phosphorus resulting from
loading reductions, all but two changed at rates greater than
3.5% per year (two-fold over 20 years), and the median rate
of change was 8.2% per year (4.8-fold over 20 years). In
screening lake-survey data sets for this analysis two reser-
voirs were excluded, Henry Sever and Little Dixie, because of
management manipulations. Both showed large responses to
grass carp stocking to control macrophytes wherein TP more
than doubled over 6-7 years as macrophytes were reduced. In
Henry Sever, Cht increased >6-fold during the same period.
Such dramatic changes are likely noticed even in highly
variable systems, but small or gradual changes are not. Our
findings support the view of Smeltzer e al. (1989) that lake
monitoring data should not be relied on for the detection of
small changes in temporally variable parameters. Clearly,
from the standpoint of many lake management questions,
the answer to “how many samples are needed” is “as many
as you can afford to get,” or possibly “more than you can
afford to get.” Temporal variation is a limiting factor of great
practical consequence in lake assessment.

As data on temporal variability accumulate, the limitations
imposed may be remedied by quantifying causes or finding
close correlates with predictive value. Published data (Table
4) suggest that temporal variation may vary consistently
among regions. Work in other areas (Magnuson et al. 1990,
Larsen et al. 1995) provides evidence of coherent, or syn-
chronous, variations among lakes within regions. Time series
from intensively studied lakes sometime reveal links between
year-to-year variation and measurable external factor such as
climate. For example, conditions in Castle Lake, California
respond to El Nifio events, and Lake Tahoe is affected by the
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intensity of spring storms (Jassby 1998). Reservoirs seem par-
ticularly likely to respond to variation in inflows (Knowlton
and Jones 1995, Harris and Baxter 1997). Knowing the causes
of variation, even if they are not predictable in advance, could
permit after-the-fact adjustment of annual means to reflect
a standard (and less variable) condition. Achieving a better
understanding of “typical” temporal variability promises
to provide many benefits to the management of lakes and
protection of water quality.
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