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ABSTRACT 

Jones,]. R., M. F. Knowlton andM. S. Kaiser. I 998. Effects ofaggregation on chlorophyll-phosphorus relations in Missouri 
reseivoirs. Lake and Reseiv. Manage. 14(1) :1-9. 

Using chlorophyll and phosphorus data from 119 Missouri reseivoirs we show how data aggregation -averaging data 
into seasonal means or long-term lake means - influences our ability to make inferences from large-scale statistical 
regression analyses. We demonstrate the most obvious phenomenon of data aggregation, that relations between variables 
estimated from aggregated data are generally stronger than the same relations estimated from unaggregated data. 
Averaging reduces the often large variation in the response of chlorophyll to phosphorus (Chl-TP) that characterizes 
measurements of these variables in lakes. We also demonstrate that inferences made from statistical regression analyses 
apply only to situations that match the level ofaggregation used to produce the model. Using lake means we found a strong 
positive Chl-TP relation. This strong cross-sectional pattern among lakes in the study, however, did not always reflect the 
relation of these variables to one another in individual lakes. And the cross-sectional pattern has limited value in 
predicting conditions in unaggregated data. The effect of aggregation on the estimated strength of a regression relation 
serves as a caution in transferring inferential statements about the effect ofTP on Chi between temporal scales and among 
lakes. 
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Any historical review of scientific achievements in 
limnology would highlight the impact of large-scale 
comparative lake studies on our ability to identify key 
variables that influence lake structure and processes 
(Peters 1986). The report by Vollenweider (1968) is 
sometimes considered a startingpoin tfor this approach, 
but studies by Deevey (1940), Rawson (1955), and 
Edmondson (1961) are earlier examples of its skillful 
use. In the comparative approach, extensive collections 
of data from many lakes are evaluated to identify 
statistical relations between vadables that are powerful 
enough to stand outagainst other sources of among-lake 
variation (Collins and Sprules 1983). These general 
patterns, typically based on averaging and regression 
analysis, are called empirical models and describe the 
composite pattern of the response variable and 
explanatory factor within the population oflakes being 

studied. These analyses are typically conducted over a 
range of lakes without regard to lake identity in 
individual data points, and the effects of unmeasured 
va1iables on the relation exist as residual error. Resulting 
models promptsubsequent work on explanatory theory, 
and lake managers use them to make predictions and 
formulate policy (Peters 1986). A key element of this 
approach is that we assume processes responsible for 
the large cross-sectional patterns also operate within 
single systems over time (Prairie and Marshall 1995). 

The chlorophyll-phosphorus relation (Chl-TP, 
Fig. 1) is a familiar empirical model in limnology. 
Deevey (1940) first described the correlation between 
these vadables in Connecticut lakes, and using data 
from Japanese lakes, Sakamoto (1966) showed the 
response of algal biomass to phosphorus was linear on 
a log-log scale. Both authors averaged chlorophyll and 
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Figure 1.-Chlorophyll-TP relations atdifferentlevels of aggregation. 
a) Individual Observations - data points are from Chi and TP 
anal~s conducted on individual samples of lake water. Fitted 
regression model is Log,. Chi =-0.42 + 0.94 • Log., TP, R'=0,52. b) 
Seasonal means- data points are averages ofindividual observations 
in a given lake during a particular summer. Fitted regression model 
is Log1• Chi =-0.51\+ 1.05 • Log., TP, R'=0,69. c) Lake means-data 
points are averages of the seasonal means for each lake. Fitted 
regression model is Log .. Chi =-0.70 + 1.13 • Log .. TP, R'=0.84. 

phosphorus measurements from their various study 
lakes into seasonal mean values prior to statistical 
treatment. Since then, scores of publications have 
described models predicting average algal chlorophyll 
from mean phosphorus values. Among these, there are 
global models based on lake data from several continents 
(Dillon and Rigler 1974,Jones and Bachmann 1976, 
OECD 1982), regional models (Canfield 1983, Quiros 
1990, Jones and Knowlton 1993) , and models for 
individual lakes (Edmondson 1972, Smith and Shapiro 
1981, Knowlton and Jones 1990). In some data sets, 
algal biomass responds in a non-linear, or sigmoidal 
fashion to phosphorus (McCauley et al. 1989, Watson 
et al. 1992, Knowlton andjones 1993). Variability in 
regressions of Chi on TP arises from a variety of physical, 
chemical, and biotic factors. Light limitation, water 
residence time, nitrogen limitation, zooplankton 
grazing, and other conditions have been identified as 
important (Sakamoto 1966, Shapiro 1980, Straskraba 
1980, Hoyer and Jones 1983, Riley and Prepas 1985) . 
Generally ignored, however, is that the practice of data 
aggregation-averaging data into means-can affect 
the quantitative features of these models and the 
perceived influence of other limiting factors ( Know! ton 
et al. 1984). 

When an empirical Chl-TP model, formulated 
using seasonal means or long-term lake means 
(aggregated data), is used to draw inference or make 
predictions at finer scales (unaggregated data), there 
is an implicit assumption that the relation remains the 
same at these various scales. If the identity of individual 
lakes is irrelevant in identifying a cross-sectional pattern 
in regression analysis on aggregated data, then this 
assumption, and inferences, are appropriate. However, 
if the Chl-TP relation differs among lakes, or within any 
given lake over time, then it is inappropriate to ignore 
scale (level of aggregation) in making inferences or 
predictions from cross-sectional models. Possible 
differences in Chl-TP relations among lakes include 
both differences in the underlying regression equation 
and differences in the observed ranges of Chi and TP. 
Both phenomena may cause regressions developed 
from data at one level of aggregation to differ from 
those developed at another level or scale. 

The 'effects of data aggregation' on the results of 
regression analysis can be grouped into two broad 
categories: effects on the strength ofChl-TP relations 
as judged by the coefficient of determination, and 
effects on the functional form of regression equations. 
The impact of data aggregation on the strength of the 
relation, which impacts our level of confidence in 
prediction of Chi based on observed TP, is a well-known 
statistical phenomenon. Yule and Kendall ( 1950) were 
among the first to recognize that relations among 
variables estimated from aggregated data tend to be 
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stronger than the same relations estimated from 
unaggregated data. The effect of data aggregation on 
regression equations themselves poses a more difficult 
problem for statistical treatment, because these effects 
involve problems of model misspecification (Langbein 
and Lichtman 1978). If present, both types of aggre
gation effect have the potential to invalidate inferences 
about individual lakes made on the basis of models 
from aggregated data. 

The purpose of this paper is to use observations 
from a large data base on Missouri reservoirs to 
demonstrate how data aggregation influences our ability 
to transfer inferences from large-scale comparative 
analyses ofChl-TP relations to finer scales. It is impor
tant in limnology to understand the implication of 
models based on aggregated data. Inferences from 
data expressed as seasonal or lake means provide us 
with functional theories about system characteristics 
and allow us to predict conditions in unsampled systems. 
Understanding the conditions under which aggre
gation is likely important to scientific investigation is a 
topic of current research (e.g., Cressie 1996). The 
results presented are also pertinent for a variety of 
other empirical relations based on data aggregation 
(Peters 1986). 

Database 

Data for this analysis come from studies of Missouri 
reservoirs during 1978 to 1996 in which samples during 
summer have been used to characterize in-lake 
conditions and processes ( e.g., Knowlton et al. 1984, 
Jones and Knowlton 1993). This large data set allows us 
to evaluate the Chl-TP relation at several levels to 
determine the effect of aggregating data and determine 
whether aggregate models describe individual lake 
behavior. Our approach was to screen the historic data 
set and select reservoirs with from 6 to 14 seasonal 
means ( each with 2 to l 4samples per summer). Analyses 
were conducted using individual observations 
(conditions in a reservoir on a given sampling date, 
n=3599), seasonal means (n=l078), and lake means 
( average of the seasonal means, n= 119). A summary of 
these data, at the level of the lake mean, is given in 
Table I. UnpublisheddatafromLakeWoodrail,located 
in central Missouri, was used to illustrate the variability 
of chlorophyll and phosphoms in a single lake. This 
lake was sampled each day during May through August 
1992-96 (n=5 seasons). All measurements are from 
summer and these data come from a single laboratory 
and, therefore, minimize the effects of time scale and 
methodology on the residual variance in these analyses 
(Nicholls and Dillon 1978). 

Table 1.-Data set characteristics. Data were collected 
between 1978 and 1996 from 119 reservoirs in Missouri. 
Means of CHL and TP are weighted by lake and are 
hack-transformed from the log

10 
units in which they 

were calculated. 

Mean Range 

Years per Lake 9.1 6-14 

Days per Year 3.4 2 -14 

CHL (µg.L 1
) 10.4 0.3- 368 

TP (µg.L·1) 33.3 1.7 - 692 

Results 

The effect of data aggregation on Chl-TP in 119 
Missouri reservoirs is shown in Fig. 1. Variation about 
the regression is clearly a function of averaging; the 
relation strengthens with higher levels of aggregation. 
Among individual observations there was a 18-fold 
range in Chi at any given level of TP (Fig. la) with a 
coefficient of determination (R2

) of 0.52. Variation in 
Chi at fixed levels ofTP dropped to ninefold among 
seasonal means with an R2 of0.68 (Fig. I b). When data 
were averaged to the level of the lake mean, the range 
in Chi for given TPvaluewas about fourfold and the R2 

was 0.84. Even though the aggregated data show a 
stronger relation than unaggregated data, linear 
regressions fitted to log transformed data in Fig. I were 
similar. The lake mean model did not differ from the 
other two relations (p>0.05, using a standard general 
linear test). This finding is in keepingwith the hypothesis 
that a cross-sectional pattern between TP and Chi in 
this population of lakes is the same at each level of 
aggregation. 

To demonstrate variation in Chl-TP in unaveraged 
data, we plotted the maximum and minimum Chi value 
from each lake in the dataset against the corresponding 
TP value (selected from an average of 30 values 
measured during 6 to 14 years of sampling). On average, 
maximumChlwassomel5timestheminimum.Further, 
it is likely that the actual range within each lake was 
much larger than represented in our data. In Lake 
Woodrail, wheresampleswere collected each day during 
five summers (n=597), the maximum-minimum 
fluctuation in Chi was 58-fold. To further illustrate 
variation within our study lakes, we connected maximum 
and minimum Chi values from each study lake with 
straight line (Fig. 2b). In most Missouri reservoirs, 
maximum Chi values were responsive to increases in 
TP. However, in about 20% of the study lakes Chi 
declined with TP; among the data points for these lakes 
minimum Chi co-occurred with high levels ofTP, and 
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Figure 2.-Minimum and maximum Chi observed in each lake 
(individual observations) plotted against the TP measured in the 
same samples. a) Maximum Chi plotted as solid circles, minimum 
Chi plotted as open circles. b) Maximum and minimum observations 
from each lake connected by lines. 

maximum Chi was measured at moderate TP. This 
simple example, using only the most extreme values of 
Chi from each waterbody, shows that response of Chi to 
TPwithin individual lakes in the dataset is not universal. 

Among individual observations in each lake the 
correlation between Chi and TP ranged between -0.56 
and 0.93; some 13% of the rvalues were <0 and nearly 
the same proportion were >0.75. In most lakes, Chi and 
TP track one another (Fig. 3a), and the process 
operating in the aggregated data seems to apply over 
time within each, although with a greater level of 
variability. In these lakes an investigator would identify 
the Chl-TP relation using individual observations. In 
some lakes, however, there was little temporal variation 
in TP resulting in poorly defined, nonsignificant 
relations between Chl and TP (Fig. 3b). The lack of a 
clear relation would call into question whether the 
empirical relation shown in Fig. 1 applies in these cases. 

The negative Chl-TP pattern demonstrated with 
maximum and minimum Chl in Fig. 2b occurs in our 
most turbid reservoirs (Jones and Knowlton 1993, 
Knowlton and Jones 1993). Peak TP levels are associated 
with elevated levels of inorganic suspended solids 
(Fig. 4a), which increase non-algal light attenuation 
(Fig.4b) andreducealgalgrowth (Knowltonandjones 
1996). Periods of rapid flushing may also be a factor 
reducing algal response to nutrients (Soballe and 
Threlkeld 1985, Knowlton and Jones 1990). In these 
turbid lakes, the cross-sectional Chl-TP relation does 
not operate. Instead, they represent a second category 
where Chl-TP is negative as shown in Fig. 3c. And in 
several lakes we have evidence of a dual response in the 
Chl-TP relation (Fig. 3d). In wet years when TP inputs 
are associated with turbidity, the Chl-TP relation is 
negative, but in dry years the relation is positive and in 
some cases quite strong. This bifurcated pattern may 
be present, to a lesser extent, in a number of the study 
lakes and seems tied to weather and runoff. 

The negative Chl-TP relation in some lakes is not 
obvious from the among-lake patterns in Fig. 1. It 
certainly is a source of variation in the individual 
observations and this becomes dampened with 
aggregation. This effect is most simply demonstrated 
using lake data from Fig. 3. When individual obser
vations (Fig. Sa) are aggregated to the level of the 
seasonal mean (Fig. Sb), the orbit of individual points 
representing the negative Chl-TP relation in 
Fig. Sa appears as a small number of outliers relative to 
the general pattern. When reduced to lake means 
(Fig. Sc), all values closely match the composite pattern 
with averages from the turbid lakes being displaced 
slightly below the regression line. At this level, the 
negative Chl-TP relation is completely masked, and the 
positive, cross-sectional Chl-TP pattern would wrongly 
be thought to apply to all lakes in the group. 
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Figure 3.-Unaveraged Chi and TP data from seven representative reservoirs. a) Typical lakes (Council Bluffs Lake- triangles, Tri-City Lake 
- solid circles, Longview Lake - open circles), These lakes had significant (p<0.05) ChJ. TP regreuions (represented as solid lines for each) 
with slopes, intercepts and coefficients of determination near the median values for all Jakes in the data set. b) Low variation Jakes (Lower 
Taum Sauk Lake-open circles, Smithville Lake-solid circles). These Jakes exhibited 1- temporal variation in TP than most Jakes in the data 
set and had nonsignificant ChJ-TP regreMions (p>0.05). c) Turbid Jake (Higginsville Lake). For this lake, the ChJ-TP regression (solid line) 
was significant and negative. d) Lake with a bifurcated Chl-TP pattern (Pape Lake). For this Jake, the Chl-TP regression was significant and 
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Figure 4.-Panel a. - Plot of non-volatile suspend solids (mg/L) in 
individual samples against TP in the same sample. Panel b. - Plot of 
non-algal light attenuation (Kna) against TP. 
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Figure 5.-Effect of data aggregation on the Chl-TP relation using 
data from Figure 3. a) Individual observations of Chi and TP from 
each lake. b) Seasonal mean values of Chi and TP for each lake. c) 
Lake mean values of Chi andTP. The dotted line on each panel is the 
lake mean regression from Figure le. 
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The underlying assumptions of empirical modeling 
would lead us to look for the simplest explanation in 
the cross-sectional pattern. Taking this approach to 
data in Fig. 1, we would fit a quadratic term (TP2

) to the 
data and in each case explain some 10% of the variance 
not explained by the independent variable (Jones and 
Knowlton 1993). Our interpretation of this composite 
response would be that in lakes with high levels of 
phosphorus (> 50 ug/L), the yield of Chi per unit ofTP 
would decline. Our analyses ofindividual lakes (Figs. 2 
and 3) indicate this response is present in a subset of 
the total, but not in all lakes. By fitting a single curve to 
data containing two functional Chl-TP relations, we are 
not best representing either one. Doing separate 
analyses for lakes with positive Chl-TP, and those with 
negative Chl-TP, patterns would likely reduce 
unexplained variance. Among lakes with a positive 
Chl-TP, this approach would increase the response of 
Chi to TP, the slope of the regression. To take this step, 
however, requires advanced knowledge about individual 
lakes which comes with sampling or knowledge about 
the lakes in the region. 

Discussion 
Our analysis demonstrated the most obvious 

phenomenon of data aggregation-the strengthening 
of correlation at higher levels of aggregation (Fig. I). 
Averaging reduces to a single point the often large 
variation in Chi and TP that characterizes measure
ments of these variables in lakes (Knowlton etal.1984). 
This practice of averaging away the extremes dampens 
the variable response in Chi per unit TP which is 
present in the models as residual va1iance. It may or 
may not influence our ability to quantify the underlying 
cross-sectional pattern in these data. However, it nearly 
always improves its strength relative to nonaggregated 
data. The mathematical details of why this happens are 
beyond the scope of this paper, butarepartlyafunction 
of lake identity. Data used to develop models come 
from specific lakes with individual characteristics, 
among which are a range of variation in Chi and TP. If 
all lakes had tl1e same range in these two variables 
(similar trophic state), averaging would not have a 
major effect on the strength of the Chl-TP relation 
(Figs. 6a and b) because averages for each lake would 
include data from across the same spectrum. But an 
inherent aspect of the empirical approach is to include 
a range of systems to determine cross-sectional patterns; 
in limnology this implies using lakes across a range of 
trophic states. Successive levels of averaging restrict the 
data from each lake in the sample population into 
increasingly narrow segments of the Chi and TP 
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Figure 6.-Hypothetical examples of the effect of data aggregation 
on the strength of a correlation. a) Hypothetical group of 90 
unaveraged Chl and TP measurements with an R1 :0.52 (similar to 
unaveraged data in Figure la). b) Data from Panel-a randomly 
assigned into three groups and averaged (R1 =0.41). The effect of 
aggregation is the same as might occur by averaging data from three 
lakes with the same range of TP. c) Data from Panel-a assigned to 
three groups each representing one third of the total range ofTP and 
averaged (R1 =0.99). The effect of aggregation is the same as might 
occur in averaging data from three lakes of differing trophic state 
and, thus, different ranges of TP. 
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spectrum. Reducing the extreme values ofChl and TP 
from each lake by averaging automatically pulls the 
means closer to the overall central trend (Fig. 6c). 

A basic message of our analysis is that inferences 
made from statistical regression analyses apply only to 
situations that match the level of aggregation used to 
produce the model. Simply put, levels of scale should 
not be mixed when using empirical models. This 
concept has long been recognized in statistics (Yule 
and Kendall 1950), and most ecologists recognize that 
predictions are best when a regression equation is 
applied to conditions under which the original data 
were collected (Prairie et al. 1994). The regression of 
Chi on TP using lake-level data in Missouri indicates a 
strong positive relation (Fig. le). The strength of this 
relation over the range of conditions in our study lakes, 
gives us confidence in predicting what the long-term 
average Chi will be at a given level of TP ( on a 
transformed scale). However, the overall trend in 
Fig. 1 c may or may not accurately reflect the relation of 
these variables to one another in individual lakes. The 
central tendency in measurements of Chl and TP, 
while reflective oflake trophic state, has limited value 
in predicting conditions in unaggregated data. In our 
data (Fig. 1), the typical individual observation from 
any particular lake differs from its overall mean value 
by 35% forTP and 65% for Chl. Given that the behavior 
of these variables is highly erratic in any specific sample 
from a Missouri reservoir, we do not have great 
confidence in the probable Chl content ofa lake on a 
particular day. However, with knowledge ofa seasonal 
mean or long-term value of TP, we improve our 
confidence in the probable average Chl content of a 
given lake (Fig. 1). 

The Chl-TP relation was a key component in the 
paradigm shift from thinking oflakes as unique en ti ties 
to one in which lakes are viewed in generality, within 
the context of a continuum. Global Chl-TP relations 
alongwith experimental demonstration of phosphorus 
limitation (e.g., Schindler 1974) helped provide the 
basis for the empirical approach in limnology. The 
Missouri example suggests that by aggregating the data 
in to seasonal and lake means to identify average trends 
we masked the form of the relation in our most turbid 
lakes. Over time, we have gathered extensive data on 
each study lake, thereby allowing us to identify atypical 
patterns where the cross-sectional response does not 
apply. This is good scientific practice (Peters 1986), 
which is to compare the response of each system to that 
of the mean response. 

Recognizing that interlake continua exist enables 
us to understand large-scale patterns in the Chl-TP 
relation. However, these may not apply to intra-lake or 
other smaller-scale patterns (Reynolds 1992); 
Limnologists have long recognized that TP does not 

account for all of the variation exhibited by measure
ments ofChlin lakes. The two effects of data aggregation 
addressed in this paper are important in interpreting 
the results of statistical construction and analysis of 
empirical Chl-TP models. The effect ofaggregation on 
the estimated strength ofa regression relation serves as 
a caution in transferring inferential statements about 
the effect of TP on Chi between temporal scales and 
among lakes. The potential effects of aggregation in 
masking the functional form of appropriate regression 
equations indicate that the Chl-TP relation itself may 
be considered a continuum. The particular relation 
occurring in a lake or set of lakes over a period of time 
is influenced by various physical, chemical, and 
biological factors. With knowlege of these factors, it 
may be appropriate to view the Chl-TP relation as a 
variable phenomenon and model it as a function of 
these other factors. Or, it may be appropriate to shift 
away from regression analysis as the basic description 
ofChl-TP relations and similar empirical models (Kaiser 
et al. 1994). Developing these alternative approaches 
should be a goal for empirical limnology. 
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