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PHOSPHORUS INPUTS AND ALGAL BLOOMS IN LAKES
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ABSTRACT. The summer standing crops of plankton algae in a diverse group of lakes were
significantly related to the annual inputs of total phosphorus divided by the lake volumes.
Based on the relationship between Secchi disk transparency and chlorophyll-a concentrations,
phosphorus inputs would have to be reduced below about 0.02 mg/1 before significant in-
creases in water transparency would be achieved as a result of reduced algal standing crops.

Many lakes have high densities of plankton algae that reduce water transparency and
otherwise degrade water quality. For this reason lake management plans often seek to reduce
algal populations. A common approach that has had varying success has been to decrease the
amounts of plant nutrients entering a lake. Significant reductions in algal levels have been
achieved in Lake Washington (Edmondson, 1869; 1970; 1972) after diversion of sewage
effluents, but nutrient-reduction programs in Lake Mendota (Lee, 1966; Sonzongni and Lee,
1974), Lake Sammamish (Emery, Moon and Welch, 1973), Snake Lake (Born et al., 1973),
and Lake Norrviken (Ahlgren, 1972) have been less successful.

Quantitative relationships are needed to predict the response of alake to a given nutrient
reduction so that the costs of nutrient control can be weighed against the potential benefits.
To this end Vollenweider (1968) separated oligotrophic and eutrophic lakes on the basis of
mean defth and annual inputs of nitrogen and phosphorus per unit of surface area (g/m?).
He established critical surface loading values above which an oligotrophic lake of a given depth
would be degraded to a eutrophic lake, We have extended his approach by recognizing the
many intermediate conditions that exist between the most sterile oligotrophic lakes and the
most productive eutrophic lakes.

As an index of trophic status, we measured the average conventrations of planktonic
chlorophyll-a in July and August in four lakes in northwestern Iowa (Lake West Okoboji,
Lake East Okoboji, Spirit Lake, and Lower Gar Lake) during each of 3 years (Jones and
Bachmann, in prep.). Annual inputs of total phosphorus and inorganic nitrogen for each year
were estimated by sampling the rainfall and the inputs of the tributary streams. We followed
the procedure of Edmondson (1961) and divided the annual inputs of each element by the
lake volumes to find the potential concentrations in the lakes. In Lower Gar Lake where the
annual water input exceeded the lake volume, we used the average concentrations of the in-
flowing streams as the potential concentrations.

We found a high correlation between the summer chlorophyll-a values and the potential
concentrations of either total phosphorus (r=0.82, P=0.01) or inorganic nitrogen (r=0.74,
P=0.01). This relationship was consistent over all lakes and over years within individual lakes.
Because the potential concentrations of phosphorus and nitrogen were highly correlated
(r=0.84, P=0.01) and the ratio of inorganic nitrogen to total phosphorus (19:1 by weight)
exceeded the ratio commonly found in plankton algae (Vollenweider, 1968), we confined our
remaining analyses to phosphorus alone.

In Figure 1, we have combined our data with comparable information for other lakes
with published data on phosphorus inputs and summer chlorophyll-a levels (Ahlgren, 1967;
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Mackenthun, Keup, and Stewart, 1968; Edmondson, 1969; Ahlgren, 1970; Edmondson,1970;
Megard, 1970; Schindler and Nighswander, 1970; Schindler et al., 1973; Emery et al., 1973;
Malueg, personal communication). Logarithmic scales were used to linearize the relationship.
The correlation between the transformed variables is surprisingly high (r=0.93, p=0.01) con-
sidering the wide range of lakes examined, the problems involved in obtaining accurate nutri-
ent budgets for lakes, and that phosphorus was the only nutrient considered. Further, the
standing erops of macrophytes and other aquatic organisms were not considered.

Our findings confirm that the trophic status of lakes is determined to a large extent by
the annual inputs of phosphorus. In the Iowa lakes the magnitude of the summer algal stand-
ing crops varied with the phosphorus inputs in the previous year. When natural changes in the
annual runoff lowered the phosphorus input, the lakes responded with a smaller algal bloom.
In like manner the algal crops in Lake Washington decreased as the sewage effluents were
diverted from that lake (Edmondson, 1969; 1970).

Responses of individual lakes to changes in annual phosphorus input probably reflect the
strong tendency for phosphorus to become bound in the sediments of most lakes, thus provid-
ing little carryover from year to year (Vollenweider, 1968). For the Iowa lakes we found no
significant difference between the potential concentrations of phosphorus, as calculated from
annual inputs, and the actual summer concentrations of total phosphorus measured in the
summer. Other studies have shown that, in warm months, the phosphorus in the epilimnion
is recycled many times (Schindler, 1973) and that the zooplankton seem important in this
process (Peters and Lean, 1973; Peters and Rigler, 1973). Thus, the summer phosphorus sup-
ply remains available for phytoplankton growth during the growing season and can determine
the ultimate size of the summer standing crop.

The phosphorus-chlorophyll-a relationship based on a wide sample of lakes should be a
useful basis for predicting the benefits of a nutrient-reduction program. Exceptions would be
(a) lakes in which light transparency is markedly reduced by inorganic turbidities or by high
concentrations of humic materials (b) lakes with high flushing rates such that the phytoplank-
ton population is lost before the maximum potential densities are attained and (c) lakes where
the upper mixed layer is so thick relative to the thickness of the euphotic zone that light be-
comes limiting to population growth.

To provide a basis for establishing a critical value for nutrient loading, we have looked at
the relationship between chlorophyll-a concentrations and water transparency. Water clarity
is readily evaluated by the general public, and the impetus for many nutrient-reduction pro-
grams is based on improvements in water clarity even though other limnological benefits-are
expected, Edmondson (1970) has pointed out that water transparency as measured by the
Secchi disk depth ishyperbolically related to chlorophyll-a concentrations in Lake Washington,
This relationship, including points for several other lakes (Saunders, Trama, and Bachmann,
1962; McGauhey et al., 1963; Ahlgren, 1967; Ahlgren, 1970; Schindler and Nighswander,
1970; Schindler et al., 1971; Larson, 1972; Powers et al., 1972; Willen, 1972; Emery et al.,
1973; Schindler et al., 1973), is given graphically in Figure 2. Many factors besides chloro-
phyll-a—such as size and shape of the algal cells, inorganic turbidities, and dissolved organic
materials—also determine the optical properties of lakes. Even so, transparencies of lakes
with chlorophyll-a values of less than 10.mg/m? are extremely sensitive to changes in algal
abundance, whereas transparencies of lakes with chlorophyll-a concentrations above this
value differ little. A nutrient-reduction program would have to reduce algal densities below
this level to achieve noticeable improvements. According to our data (Fig. 1), a chlorophyll-
2 value of 10 mg/m? would be produced by potential phosphorus concentrations in the range
of about 0.014 to 0.04 mg/1. A value of about 0.02 mg/1 is obtained from the regression
line. Reducing phosphorus below this level should lead to improving water transparencies by
reducing algal biomass. The value derived by the use of the chlorophyll-a relationship can be
compared to the dangerous loading values given by Vollenweider (1968) by dividing his
specific loading rates (g/m?) for various lakes by their mean depths to yield potential concen-
trations (mg/1). His eutrophic lakes all have potential concentrations of phosphorus greater
than 0.02 mg/1 while his intermediate and oligotrophic lakes all have smaller potential concen-
trations. The two approaches seem to arrive at the same end result.
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Figure 2. Relationship between mean Secchi disk transparencies for July and August and the

mean July-August chlorophyll-a concentrations for 16 lakes.
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